首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Reactions of vaccinia topoisomerase and the tyrosine site-specific recombinase Flp with methylphosphonate (MeP) substituted DNA substrates, have provided important insights into the electrostatic features of the strand cleavage and strand joining steps catalyzed by them. A conserved arginine residue in the catalytic pentad, Arg-223 in topoisomerase and Arg-308 in Flp, is not essential for stabilizing the MeP transition state. Topoisomerase or its R223A variant promotes cleavage of the MeP bond by the active site nucleophile Tyr-274, followed by the rapid hydrolysis of the MeP-tyrosyl intermediate. Flp(R308A), but not wild type Flp, mediates direct hydrolysis of the activated MeP bond. These findings are consistent with a potential role for phosphate electrostatics and active site electrostatics in protecting DNA relaxation and site-specific recombination, respectively, against abortive hydrolysis.

Methodology/Principal Findings

We have examined the effects of DNA containing MeP substitution in the Flp related Cre recombination system. Neutralizing the negative charge at the scissile position does not render the tyrosyl intermediate formed by Cre susceptible to rapid hydrolysis. Furthermore, combining the active site R292A mutation in Cre (equivalent to the R223A and R308A mutations in topoisomerase and Flp, respectively) with MeP substitution does not lead to direct hydrolysis of the scissile MeP bond in DNA. Whereas Cre follows the topoisomerase paradigm during the strand cleavage step, it follows the Flp paradigm during the strand joining step.

Conclusions/Significance

Collectively, the Cre, Flp and topoisomerase results highlight the contribution of conserved electrostatic complementarity between substrate and active site towards transition state stabilization during site-specific recombination and DNA relaxation. They have potential implications for how transesterification reactions in nucleic acids are protected against undesirable abortive side reactions. Such protective mechanisms are significant, given the very real threat of hydrolytic genome damage or disruption of RNA processing due to the cellular abundance and nucleophilicity of water.  相似文献   

2.
J W Chen  J Lee  M Jayaram 《Cell》1992,69(4):647-658
Each recombination event mediated by the Flp recombinase is the sum of four strand breakage and reunion reactions executed in two steps of two-strand exchanges. The reaction requires four Flp monomers. The key catalytic residue in Flp is Tyr-343. Arg-191, His-305, and Arg-308 appear to facilitate the cleavage and exchange steps of recombination. These four residues constitute the invariant tetrad of the Int family site-specific recombinases. Complementation tests between "step-arrest" mutants of Flp suggest that each Flp protomer harbors a "fractional active site." Hybrid "half site-recombinase" complexes reveal that efficient catalysis occurs when the Arg-His-Arg triad is present on one Flp monomer and the active site Tyr on a second monomer. Strand cleavage by an Flp monomer occurs virtually exclusively on the half site to which its partner protein is bound (cleavage in trans), and almost never on the half site to which it is bound (cleavage in cis). Trans-cleavage by Flp can provide a means for functionally exchanging Flp monomers between two DNA partners. Such a mechanism would be germane to recombination, since cleavage and rejoining in cis can only restore the parental substrate configuration and cannot yield recombinants.  相似文献   

3.
The tyrosine at position 60 of the Flp recombinase of the Saccharomyces cerevisiae plasmid, 2 mu circle, is invariant among site-specific recombinases of the "yeast plasmid family". Alterations of this residue give rise to Flp variants that show no recombination activity when assayed in vivo in Escherichia coli. Upon purification, they bind substrate, execute DNA cleavage and catalyze recombination. The efficiency of strand cleavage follows the order: Flp(Y60F) greater than Flp greater than Flp(Y60S) greater than Flp(Y60D); efficiency of recombination between Flp sites on a linear substrate and a circular one follows the order: Flp greater than Flp(Y60F) greater than Flp(Y60S) greater than Flp(Y60D). Methylation footprints of the DNA-protein complexes formed by two of the Flp variants, Flp(Y60S) and Flp(Y60D), do not show hypermethylation of the G residues within the substrate core that is characteristic of complexes formed by wild-type Flp. The third variant, Flp(Y60F), causes significant distortion (although less than wild-type Flp) of the substrate core, as indicated by enhanced G-methylation. Binding profiles with circularly permuted substrates indicate that Flp(Y60S) and Flp(Y60D), but not Flp(Y60F), are defective in bending substrate DNA. In recombination between two Flp half-sites, the variant proteins are significantly more active than in normal full-site recombination.  相似文献   

4.
A combination of site-directed mutagenesis and amino acid sequence analysis identifies Tyr-343 of Flp recombinase as the residue that covalently attaches to DNA during the strand-cleavage step of recombination. This residue is part of the invariant His-Arg-Tyr triad of the Int family of recombinases. Tyr-343 is located in a highly protease-accessible (and hence "open") region of Flp. This placement may provide the conformational flexibility required for the dual role of Tyr-343 in recombination: nicking of the DNA strands to initiate recombination and joining of the nicked strands across partner substrates to complete recombination. In-frame insertion of a few amino acids close to Tyr-343 (and to its amino-terminal side) does not affect substrate recognition by Flp but abolishes its catalytic function.  相似文献   

5.
The active site of the tyrosine family site-specific recombinase Flp contains a conserved catalytic pentad that includes two arginine residues, Arg-191 and Arg-308. Both arginines are essential for the transesterification steps of strand cleavage and strand joining in DNA substrates containing a phosphate group at the scissile position. During strand cleavage, the active site tyrosine supplies the nucleophile to form a covalent 3′-phosphotyrosyl intermediate. The 5′-hydroxyl group produced by cleavage provides the nucleophile to re-form a 3′-5′ phosphodiester bond in a recombinant DNA strand. In previous work we showed that substitution of the scissile phosphate (P) by the charge neutral methylphosphonate (MeP) makes Arg-308 dispensable during the catalytic activation of the MeP diester bond. However, in the Flp(R308A) reaction, water out-competes the tyrosine nucleophile (Tyr-343) to cause direct hydrolysis of the MeP diester bond. We now report that for MeP activation Arg-191 is also not required. In contrast to Flp(R308A), Flp(R191A) primarily mediates normal cleavage by Tyr-343 but also exhibits a weaker direct hydrolytic activity. The cleaved MeP-tyrosyl intermediate formed by Flp(R191A) can be targeted for nucleophilic attack by a 5′-hydroxyl or water and channeled toward strand joining or hydrolysis, respectively. In collaboration with wild type Flp, Flp(R191A) promotes strand exchange between MeP- and P-DNA partners. Loss of a catalytically crucial positively charged side chain can thus be suppressed by a compensatory modification in the DNA substrate that neutralizes the negative charge on the scissile phosphate.  相似文献   

6.
The site-specific recombinases Flp and R from Saccharomyces cerevisiae and Zygosaccharomyces rouxii, respectively, are related proteins that share approximately 30% amino acid matches. They exhibit a common reaction mechanism that appears to be conserved within the larger Integrase family of site-specific recombinases. Two regions of the proteins, designated as Box I and Box II, harbor, in addition to amino acid conservation, a significantly high degree of nucleotide sequence homology within their coding segments. Box II also contains two amino acids, a histidine and an arginine, that are invariant throughout the Int family. We have performed functional analysis of Flp and R variants carrying point mutations within the Box II segment. Several positions within Box II can tolerate substitutions with no effect, or only modest effects on recombination. Alterations of the Int family residues, His305 and Arg308, in the R protein lead to the arrest of recombination at the strand cleavage or the strand exchange step. This is very similar to previously observed "step-arrest" phenotypes in Flp variants altered at these positions and has strong implications for the catalytic mechanism of recombination. Flp and R variants at His305 and His309 can be complemented in half-site strand transfer by a corresponding Tyr343 to phenylalanine variant. In contrast to Arg308 Flp variants, which are efficiently complemented in half-site strand transfer by Flp(Y343F), no strong complementation has been observed between Arg308 variants of R and R (Y343F).  相似文献   

7.
Using a combination of DNA and hybrid DNA-RNA substrates, we have analyzed the mechanism of phosphoryl transfer by the Flp site-specific recombinase in three different reactions: DNA strand breakage and joining, and two types of RNA cleavage activities. These reactions were then used to characterize Flp variants altered at His309 and His345, amino acid residues that are in close proximity to two key catalytic residues (Arg308 and Tyr343). These histidine residues are important for strand cutting by Tyr343, the active-site nucleophile of Flp, but neither residue contributes to the type II RNA cleavage activity or to the strand-joining reaction in a pre-cleaved substrate. Strand cleavage reactions using small, diffusible nucleophiles indicate that this histidine pair contributes to the correct positioning and activation of Tyr343 within the shared active site of Flp. The implications of these results are evaluated against the recently solved crystal structure of Flp in association with a Holliday junction.  相似文献   

8.
The site-specific recombinases Flp and R from Saccharomyces cerevisiae and Zygosaccharomyces rouxii, respectively, are related proteins that belong to the yeast family of site-specific recombinases. They share approximately 30% amino acid matches and exhibit a common reaction mechanism that appears to be conserved within the larger integrase family of site-specific recombinases. Two regions of the proteins, designated box I and box II, also harbor a significantly high degree of homology at the nucleotide sequence level. We have analyzed the properties of Flp and R variants carrying point mutations within the box I segment in substrate-binding, DNA cleavage, and full-site and half-site strand transfer reactions. All mutations abolish or seriously diminish recombinase function either at the substrate-binding step or at the catalytic steps of strand cleavage or strand transfer. Of particular interest are mutations of Arg-191 of Flp and R, residues which correspond to one of the two invariant arginine residues of the integrase family. These variant proteins bind substrate with affinities comparable to those of the corresponding wild-type recombinases. Among the binding-competent variants, only Flp(R191K) is capable of efficient substrate cleavage in a full recombination target. However, this protein does not cleave a half recombination site and fails to complete strand exchange in a full site. Strikingly, the Arg-191 mutants of Flp and R can be rescued in half-site strand transfer reactions by a second point mutant of the corresponding recombinase that lacks its active-site tyrosine (Tyr-343). Similarly, Flp and R variants of Cys-189 and Flp variants at Asp-194 and Asp-199 can also be complemented by the corresponding Tyr-343-to-phenylalanine recombinase mutant.  相似文献   

9.
In this study, we have used multiple strategies to characterize the mechanisms of the type I and type II RNA cleavage activities harbored by the Flp (pronounced here as "flip") site-specific DNA recombinase (Flp-RNase I and II, respectively). Reactions using half-sites pre-bound by step-arrest mutants of Flp agree with a "shared active site" being responsible for the type I reaction (as is the case with normal DNA recombination). In a "pre-cleaved" type I substrate containing a 3'-phosphotyrosyl bond, the Flp-RNase I activity can be elicited by either wild type Flp or by Flp(Y343F). Kinetic analyses of the type I reaction are consistent with the above observations and support the notion that the DNA recombinase and type I RNase active sites are identical. The type II RNase activity is expressed by Flp(Y343F) in a half-site substrate and is unaffected by the catalytic constitution of a Flp monomer present on a partner half-site. Reaction conditions that proscribe the assembly of a DNA bound Flp dimer have no effect on Flp-RNase II. These biochemical results, together with kinetic data, are consistent with the reaction being performed from a "non-shared active site" contained within a single Flp monomer. The Flp-related recombinase Cre, which utilizes a non-shared recombination active site, exhibits the type I RNA cleavage reaction. So far, we have failed to detect the type II RNase activity in Cre. Despite their differences in active site assembly, Cre functionally mimics Flp in being able to provide two functional active sites from a trimer of Cre bound to a three-armed (Y-shaped) substrate.  相似文献   

10.
Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site‐specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3′‐phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg‐308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti‐hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site‐specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns.  相似文献   

11.
Site-specific recombination within the Saccharomyces cerevisiae 2-micron DNA plasmid is catalyzed by the Flp recombinase at specific Flp Recognition Target (FRT) sites, which lie near the center of two precise 599-bp Inverted Repeats (IRs). However, the role of IR DNA sequences other than the FRT itself for the function of the Flp reaction in vivo is not known. In the present work we report that recombination efficiency differs depending on whether the FRT or the entire IR serves as the substrate for Flp. We also provide evidence for the involvement of the IR in RAD52-dependent homologous recombination. In contrast, the catalysis of site-specific recombination between two FRTs does not require the function of RAD52. The efficiency of Flp site-specific recombination between two IRs cloned in the same orientation is about one hundred times higher than that obtained when only the two FRTs are present. Moreover, we demonstrate that a single IR can activate RAD52-dependent homologous recombination between two flanking DNA regions, providing new insights into the role of the IR as a substrate for recombination and a new experimental tool with which to study the molecular mechanism of homologous recombination. Received: 14 June 1999 / Accepted: 3 November 1999  相似文献   

12.
The Flp protein from Saccharomyces cerevisiae is one of the site-specific tyrosine family recombinases that are used widely in genomic engineering. As a first step towards mediating directed DNA rearrangements at non-native Flp recombination targets (mFRTs), we have evolved three separate groups of Flp variants that preferentially act on mFRTs containing substitutions at the first, seventh or both positions of the Flp-binding elements. The variants that recombine the double-mutant mFRT contain a subset of the mutations present in those that are active on the single-mutant mFRTs, plus additional mutations. Specificity for and discrimination between target sites, effected primarily by amino acid residues that contact DNA, can be modulated by those that do not interact with DNA or with a DNA-contacting residue. The degree of modulation can range from relaxed DNA specificity to almost completely altered specificity. Our results suggest that combined DNA shuffling and mutagenesis of libraries of Flp variants active on distinct mFRTs can yield variants that can recombine mFRTs containing combinations of the individual mutations.  相似文献   

13.
Hel308 is a superfamily 2 helicase conserved in eukaryotes and archaea. It is thought to function in the early stages of recombination following replication fork arrest and has a specificity for removal of the lagging strand in model replication forks. A homologous helicase constitutes the N-terminal domain of human DNA polymerase Q. The Drosophila homologue mus301 is implicated in double strand break repair and meiotic recombination. We have solved the high resolution crystal structure of Hel308 from the crenarchaeon Sulfolobus solfataricus, revealing a five-domain structure with a central pore lined with essential DNA binding residues. The fifth domain is shown to act as an autoinhibitory domain or molecular brake, clamping the single-stranded DNA extruded through the central pore of the helicase structure to limit the helicase activity of the enzyme. This provides an elegant mechanism to tune the processivity of the enzyme to its functional role. Hel308 can displace streptavidin from a biotinylated DNA molecule, and this activity is only partially inhibited when the DNA is pre-bound with abundant DNA-binding proteins RPA or Alba1, whereas pre-binding with the recombinase RadA has no effect on activity. These data suggest that one function of the enzyme may be in the removal of bound proteins at stalled replication forks and recombination intermediates.  相似文献   

14.
The catalytic pentad of tyrosine recombinases, that assists the tyrosine nucleophile, includes a conserved histidine/tryptophan (His/Trp-III). Flp and Cre harbor tryptophan at this position; most of their kin recombinases display histidine. Contrary to the conservation rule, Flp(W330F) is a much stronger recombinase than Flp(W330H). The hydrophobicity of Trp330 or Phe330 is utilized in correctly positioning Tyr343 during the strand cleavage step of recombination. Why then is phenylalanine almost never encountered in the recombinase family at this conserved position? Using exogenous nucleophiles and synthetic methylphosphonate or 5'-thiolate substrates, we decipher that Trp330 also assists in the activation of the scissile phosphate and the departure of the 5'-hydroxyl leaving group. These two functions are consistent with the hydrogen bonding property of Trp330 as well as its location in structures of the Flp recombination complexes. However, van der Waals contact between Trp330 and Arg308 may also be important for the phosphate activation step. A structure based suppression strategy permits the inactive variant Flp(W330A) to be rescued by a second site mutation A339M. Modeling alanine and methionine at positions 330 and 339, respectively, in the Flp crystal structure suggests a plausible mechanism for active site restoration. Successful suppression suggests the possibility of evolving, by design, new active site configurations for tyrosine recombination.  相似文献   

15.
The strictly conserved arginine residue proximal to the active site tyrosine of type IA topoisomerases is required for the relaxation of supercoiled DNA and was hypothesized to be required for positioning of the scissile phosphate for DNA cleavage to take place. Mutants of recombinant Yersinia pestis topoisomerase I with hydrophobic substitutions at this position were found in genetic screening to exhibit a dominant lethal phenotype, resulting in drastic loss in Escherichia coli viability when overexpressed. In depth biochemical analysis of E. coli topoisomerase I with the corresponding Arg-321 mutation showed that DNA cleavage can still take place in the absence of this arginine function if Mg(2+) is present to enhance the interaction of the enzyme with the scissile phosphate. However, DNA rejoining is inhibited in the absence of this conserved arginine, resulting in accumulation of the cleaved covalent intermediate and loss of relaxation activity. These new experimental results demonstrate that catalysis of DNA rejoining by type IA topoisomerases has a more stringent requirement than DNA cleavage. In addition to the divalent metal ions, the side chain of this arginine residue is required for the precise positioning of the phosphotyrosine linkage for nucleophilic attack by the 3'-OH end to result in DNA rejoining. Small molecules that can interfere or distort the enzyme-DNA interactions required for DNA rejoining by bacterial type IA topoisomerases could be developed into novel antibacterial drugs.  相似文献   

16.
The Saccharomyces cerevisiae Flp protein is a site-specific recombinase that recognizes and binds to the Flp recognition target (FRT) site, a specific sequence comprised of at least two inverted repeats separated by a spacer. Binding of four monomers of Flp is required to mediate recombination between two FRT sites. Because of its site-specific cleavage characteristics, Flp has been established as a genome engineering tool. Amongst others, Flp is used to direct insertion of genes of interest into eukaryotic cells based on single and double FRT sites. A Flp-encoding plasmid is thereby typically cotransfected with an FRT-harboring donor plasmid. Moreover, Flp can be used to excise DNA sequences that are flanked by FRT sites. Therefore, the aim of this study was to determine whether Flp protein and its step-arrest mutant, FlpH305L, recombinantly expressed in insect cells, can be used for biotechnological applications. Using a baculovirus system, the proteins were expressed as C-terminally 3?×?FLAG-tagged proteins and were purified by anti-FLAG affinity selection. As demonstrated by electrophoretic mobility shift assays (EMSAs), purified Flp and FlpH305L bind to FRT-containing DNA. Furthermore, using a cell assay, purified Flp was shown to be active in recombination and to mediate efficient insertion of a donor plasmid into the genome of target cells. Thus, these proteins can be used for applications such as DNA-binding assays, in vitro recombination, or genome engineering.  相似文献   

17.
J Lee  I Whang  J Lee    M Jayaram 《The EMBO journal》1994,13(22):5346-5354
One round of site-specific recombination between two DNA partners mediated by the Flp recombinase requires the breakage and reformation of four phosphodiester bonds. The reaction is accomplished by the combined action of four Flp monomers. Within the recombination complex, what is the relative disposition of a Flp monomer with respect to the target diester that it cleaves? To address this question, we have devised a strategy for the targeted orientation of Flp monomers within full-site recombination substrates. Our experimental design is not dependent on ''altered binding specificity'' of the recombinase. Analysis of the pattern of DNA cleavage by this method reveals no evidence for DNA cleavage in cis. A Flp monomer bound to its recognition element within the full site does not cleave the scissile phosphodiester bond adjacent to it. Our results are most consistent with ''trans-horizontal cleavage''. Cleavage by Flp occurs at the scissile phosphodiester distal to it, but within the same full site. The general experimental design employed here will be of widespread utility in mechanistic analyses of nucleic acid transactions involving multimeric DNA-protein assemblies.  相似文献   

18.
Strategies of directed evolution and combinatorial mutagenesis applied to the Flp site-specific recombinase have yielded recombination systems that utilize bi-specific hybrid target sites. A hybrid site is assembled from two half-sites, each harboring a distinct binding specificity. Satisfying the two specificities by a binary combination of Flp variants, while necessary, may not be sufficient to elicit recombination. We have identified amino acid substitutions that foster interprotomer collaboration between partner Flp variants to potentiate strand exchange in hybrid sites. One such substitution, A35T, acts specifically in cis with one of the two partners of a variant pair, Flp(K82M) and Flp(A35T, R281V). The same A35T mutation is also present within a group of mutations that rescue a Flp variant, Flp(Y60S), that is defective in establishing monomer-monomer interactions on the native Flp target site. Strikingly, these mutations are localized to peptide regions involved in interdomain and interprotomer interactions within the recombination complex. The same group of mutations, when transferred to the context of wild-type Flp, can relax its specificity to include non-native target sites. The hybrid Flp systems described here mimic the naturally occurring XerC/XerD recombination system that utilizes two recombinases with distinct DNA binding specificities. The ability to overcome the constraints of binding site symmetry in Flp recombination has important implications in the targeted manipulations of genomes.  相似文献   

19.
A combination of half-site substrates and step arrest mutants of Flp, a site-specific recombinase of the integrase family, had earlier revealed the following features of the half-site recombination reaction. (i) The Flp active site is assembled by sharing of catalytic residues from at least two monomers of the protein. (ii) A Flp monomer does not cleave the half site to which it is bound (DNA cleavage in cis); rather, it cleaves a half site bound by a second Flp monomer (DNA cleavage in trans). For the lambda integrase (Int protein), the prototype member of the Int family, catalytic complementation between two active-site mutants has been observed in reactions with a suicide attL substrate. By analogy with Flp, this observation is strongly suggestive of a shared active site and of trans DNA cleavage. However, reactions with linear suicide attB substrates and synthetic Holliday junctions are more compatible with cis than with trans DNA cleavage. These Int results either argue against a common mode of active-site assembly within the Int family or challenge the validity of Flp half sites as mimics of the normal full-site substrates. We devised a strategy to assay catalytic complementation between Flp monomers in full sites. We found that the full-site reaction follows the shared active-site paradigm and the trans mode of DNA cleavage. These results suggest that within the Int family, a unitary chemical mechanism of recombination is achieved by more than one mode of physical interaction among the recombinase monomers.  相似文献   

20.
HEL308 is a superfamily II DNA helicase, conserved from archaea through to humans. HEL308 family members were originally isolated by their similarity to the Drosophila melanogaster Mus308 protein, which contributes to the repair of replication-blocking lesions such as DNA interstrand cross-links. Biochemical studies have established that human HEL308 is an ATP-dependent enzyme that unwinds DNA with a 3' to 5' polarity, but little else is know about its mechanism. Here, we show that GFP-tagged HEL308 localizes to replication forks following camptothecin treatment. Moreover, HEL308 colocalizes with two factors involved in the repair of damaged forks by homologous recombination, Rad51 and FANCD2. Purified HEL308 requires a 3' single-stranded DNA region to load and unwind duplex DNA structures. When incubated with substrates that model stalled replication forks, HEL308 preferentially unwinds the parental strands of a structure that models a fork with a nascent lagging strand, and the unwinding action of HEL308 is specifically stimulated by human replication protein A. Finally, we show that HEL308 appears to target and unwind from the junction between single-stranded to double-stranded DNA on model fork structures. Together, our results suggest that one role for HEL308 at sites of blocked replication might be to open up the parental strands to facilitate the loading of subsequent factors required for replication restart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号