首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Nutrition and predation have been considered two primary agents of selection important in the evolution of avian life history traits. The relative importance of these natural selective forces in the evolution of avian embryonic developmental period (EDP) remain poorly resolved, perhaps in part because research has tended to focus on a single, high taxonomic-level group of birds: Order Passeriformes. The marine bird families Alcidae (auks) and Spheniscidae (penguins) exhibit marked variation in EDP, as well as behavioural and ecological traits ultimately linked to EDP. Therefore, auks and penguins provide a unique opportunity to assess the natural selective basis of variation in a key life-history trait at a low taxonomic-level. We used phylogenetic comparative methods to investigate the relative importance of behavioural and ecological factors related to nutrition and predation in the evolution of avian EDP.  相似文献   

2.

Background  

The tendency of animals and plants to independently develop similar features under similar evolutionary pressures - convergence - is a widespread phenomenon in nature. In plants, convergence has been suggested to explain the striking similarity in life form between the giant lobelioids (Campanulaceae, the bellflower family) of Africa and the Hawaiian Islands. Under this assumption these plants would have developed the giant habit from herbaceous ancestors independently, in much the same way as has been suggested for the giant senecios of Africa and the silversword alliance of Hawaii.  相似文献   

3.

Background  

Bird genomes have very different compositional structure compared with other warm-blooded animals. The variation in the base skew rules in the vertebrate genomes remains puzzling, but it must relate somehow to large-scale genome evolution. Current research is inclined to relate base skew with mutations and their fixation. Here we wish to explore base skew correlations in bird genomes, to develop methods for displaying and quantifying such correlations at different scales, and to discuss possible explanations for the peculiarities of the bird genomes in skew correlation.  相似文献   

4.

Background and Aims

The Orchidaceae have a history of recurring convergent evolution in floral function as nectar production has evolved repeatedly from an ancestral nectarless state. However, orchids exhibit considerable diversity in nectary type, position and morphology, indicating that this convergence arose from alternative adaptive solutions. Using the genus Disa, this study asks whether repeated evolution of floral nectaries involved recapitulation of the same nectary type or diversifying innovation. Epidermis morphology of closely related nectar-producing and nectarless species is also compared in order to identify histological changes that accompanied the gain or loss of nectar production.

Methods

The micromorphology of nectaries and positionally equivalent tissues in nectarless species was examined with light and scanning electron microscopy. This information was subjected to phylogenetic analyses to reconstruct nectary evolution and compare characteristics of nectar-producing and nectarless species.

Key Results

Two nectary types evolved in Disa. Nectar exudation by modified stomata in floral spurs evolved twice, whereas exudation by a secretory epidermis evolved six times in different perianth segments. The spur epidermis of nectarless species exhibited considerable micromorphological variation, including strongly textured surfaces and non-secreting stomata in some species. Epidermis morphology of nectar-producing species did not differ consistently from that of rewardless species at the magnifications used in this study, suggesting that transitions from rewardlessness to nectar production are not necessarily accompanied by visible morphological changes but only require sub-cellular modification.

Conclusions

Independent nectary evolution in Disa involved both repeated recapitulation of secretory epidermis, which is present in the sister genus Brownleea, and innovation of stomatal nectaries. These contrasting nectary types and positional diversity within types imply weak genetic, developmental or physiological constraints in ancestral, nectarless Disa. Such functional convergence generated by morphologically diverse solutions probably also underlies the extensive diversity of nectary types and positions in the Orchidaceae.  相似文献   

5.
We studied the morphology of the copulatory organ of Ortalis canicollis and its evolution in birds. The phallus of O. canicollis is intromittent, with a blind tubular cavity and two distinct regions when erect: the base of the phallus, which shows the mucosa smooth and lined by a pseudostratified columnar epithelium, and the tubular portion, which shows the mucosa lined by a keratinized stratified squamous epithelium with little knobs. The phallus includes two vascular bodies at the cranial portion in the urodeum. A fibrocartilaginous body anchors the tubular portion therefrom up to the eversible portion. A branched elastic ligament inserts on different regions of the tubular portion. The phallus is plesiomorphic in birds and it has disappeared in Megapodius, Leipoa and Neoaves. The asymmetric phallus evolved early and it was retained in the basal branches of birds. The intromittent phallus is plesiomorphic in birds (found in Archosauria's ancestor), but Crypturellus, Numididae, Odontophoridae and Phasianidae have developed a non‐intromittent phallus a posteriori. The blind tubular cavity and the fibrocartilaginous body evolved as an adaptive convergence many times in birds. Therefore, this study shed some light on morphological aspects of the phallus and contributed to understand its evolution in birds.  相似文献   

6.

Background  

Within Rosaceae, the RNase based gametophytic self-incompatibility (GSI) system has been studied at the molecular level in Maloideae and Prunus species that have been diverging for, at least, 32 million years. In order to understand RNase based GSI evolution within this family, comparative studies must be performed, using similar methodologies.  相似文献   

7.

Background  

Sexual dimorphism of body size has been the subject of numerous studies, but few have examined sexual shape dimorphism (SShD) and its evolution. Allometry, the shape change associated with size variation, has been suggested to be a main component of SShD. Yet little is known about the relative importance of the allometric and non-allometric components for the evolution of SShD.  相似文献   

8.

Background  

During the last ten years, major advances have been made in characterizing and understanding the evolution of mitochondrial DNA, the most popular marker of molecular biodiversity. Several important results were recently reported using mammals as model organisms, including (i) the absence of relationship between mitochondrial DNA diversity and life-history or ecological variables, (ii) the absence of prominent adaptive selection, contrary to what was found in invertebrates, and (iii) the unexpectedly large variation in neutral substitution rate among lineages, revealing a possible link with species maximal longevity. We propose to challenge these results thanks to the bird/mammal comparison. Direct estimates of population size are available in birds, and this group presents striking life-history trait differences with mammals (higher mass-specific metabolic rate and longevity). These properties make birds the ideal model to directly test for population size effects, and to discriminate between competing hypotheses about the causes of substitution rate variation.  相似文献   

9.

Background  

Corals are notoriously difficult to identify at the species-level due to few diagnostic characters and variable skeletal morphology. This 'coral species problem' is an impediment to understanding the evolution and biodiversity of this important and threatened group of organisms. We examined the evolution of the nuclear ribosomal internal transcribed spacer (ITS) and mitochondrial markers (COI, putative control region) in Porites, one of the most taxonomically challenging and ecologically important genera of reef-building corals.  相似文献   

10.

Background  

The rapid evolution of genital morphology is a fascinating feature that accompanies many speciation events. However, the underlying patterns and explanatory processes remain to be settled. In this work we investigate the patterns of intraspecific variation and interspecific divergence in male genitalic morphology (size and shape) in the cactophilic sibling species Drosophila buzzatii and D. koepferae. Genital morphology in interspecific hybrids was examined and compared to the corresponding parental lines.  相似文献   

11.

Background  

The family Polypteridae, commonly known as "bichirs", is a lineage that diverged early in the evolutionary history of Actinopterygii (ray-finned fish), but has been the subject of far less evolutionary study than other members of that clade. Uncovering patterns of morphological change within Polypteridae provides an important opportunity to evaluate if the mechanisms underlying morphological evolution are shared among actinoptyerygians, and in fact, perhaps the entire osteichthyan (bony fish and tetrapods) tree of life. However, the greatest impediment to elucidating these patterns is the lack of a well-resolved, highly-supported phylogenetic tree of Polypteridae. In fact, the interrelationships of polypterid species have never been subject to molecular phylogenetic analysis. Here, we infer the first molecular phylogeny of bichirs, including all 12 recognized species and multiple subspecies using Bayesian analyses of 16S and cyt-b mtDNA. We use this mitochondrial phylogeny, ancestral state reconstruction, and geometric morphometrics to test whether patterns of morphological evolution, including the evolution of body elongation, pelvic fin reduction, and craniofacial morphology, are shared throughout the osteichthyan tree of life.  相似文献   

12.

Background  

Many genes involved in the sex determining cascade have indicated signals of positive selection and rapid evolution across different species. Even though fruitless is an important gene involved mostly in several aspects of male courtship behavior, the few studies so far have explained its high rates of evolution by relaxed selective constraints. This would indicate that a large portion of this gene has evolved neutrally, contrary to what has been observed for other genes in the sex cascade.  相似文献   

13.
Patterns of diversification and timing of evolution within Neoaves, which includes almost 95% of all bird species, are virtually unknown. On the other hand, molecular data consistently indicate a Cretaceous origin of many neoavian lineages and the fossil record seems to support an Early Tertiary diversification. Here, we present the first well-resolved molecular phylogeny for Neoaves, together with divergence time estimates calibrated with a large number of stratigraphically and phylogenetically well-documented fossils. Our study defines several well-supported clades within Neoaves. The calibration results suggest that Neoaves, after an initial split from Galloanseres in Mid-Cretaceous, diversified around or soon after the K/T boundary. Our results thus do not contradict palaeontological data and show that there is no solid molecular evidence for an extensive pre-Tertiary radiation of Neoaves.  相似文献   

14.

Background  

The phosphoenolpyruvate phosphotransferase system (PTS) plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP) and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS.  相似文献   

15.
16.

Background  

Based on the observation of an increased number of paralogous genes in teleost fishes compared with other vertebrates and on the conserved synteny between duplicated copies, it has been shown that a whole genome duplication (WGD) occurred during the evolution of Actinopterygian fish. Comparative phylogenetic dating of this duplication event suggests that it occurred early on, specifically in teleosts. It has been proposed that this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish, notably by allowing the sub- or neo-functionalization of many duplicated genes.  相似文献   

17.

Background  

Cichlid fishes in Lake Tanganyika exhibit remarkable diversity in their feeding habits. Among them, seven species in the genus Perissodus are known for their unique feeding habit of scale eating with specialized feeding morphology and behaviour. Although the origin of the scale-eating habit has long been questioned, its evolutionary process is still unknown. In the present study, we conducted interspecific phylogenetic analyses for all nine known species in the tribe Perissodini (seven Perissodus and two Haplotaxodon species) using amplified fragment length polymorphism (AFLP) analyses of the nuclear DNA. On the basis of the resultant phylogenetic frameworks, the evolution of their feeding habits was traced using data from analyses of stomach contents, habitat depths, and observations of oral jaw tooth morphology.  相似文献   

18.

Background  

A theoretical model of genetic redundancy has proposed that the fates of redundant genes depend on the degree of functional redundancy, and that functionally redundant genes will not be inherited together. However, no example of actual gene evolution has been reported that can be used to test this model. Here, we analyzed the molecular evolution of the ribonuclease H (RNase H) family in prokaryotes and used the results to examine the implications of functional redundancy for gene evolution.  相似文献   

19.

Background  

Many recent studies that relax the assumption of independent evolution of sites have done so at the expense of a drastic increase in the number of substitution parameters. While additional parameters cannot be avoided to model context-dependent evolution, a large increase in model dimensionality is only justified when accompanied with careful model-building strategies that guard against overfitting. An increased dimensionality leads to increases in numerical computations of the models, increased convergence times in Bayesian Markov chain Monte Carlo algorithms and even more tedious Bayes Factor calculations.  相似文献   

20.

Background  

The lancelet amphioxus (Cephalochordata) is a close relative of vertebrates and thus may enhance our understanding of vertebrate gene and genome evolution. In this context, the globins are one of the best studied models for gene family evolution. Previous biochemical studies have demonstrated the presence of an intracellular globin in notochord tissue and myotome of amphioxus, but the corresponding gene has not yet been identified. Genomic resources of Branchiostoma floridae now facilitate the identification, experimental confirmation and molecular evolutionary analysis of its globin gene repertoire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号