首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some of the conserved residues at subunit interfaces of thermophilic xylose isomerases (XIs) were selected by means of both multiple sequences alignment and subunit interactions analysis of XIs, and then were mutated for improving the activity of Thermus thermophilus xylose isomerase (TtXI). By site-directed mutagenesis, single (D375G, K355A, V144A) and double (D375G/V385A) mutations were introduced into TtXI containing a N91D mutation site, namely, TtXI-N91D. It was shown that the specific activities of mutants D375G, K355A and V144A were remarkably increased over a temperature range of 40–90 °C at pH 7.0. The activities of mutants D375G/V385A, D375G, V144A and K355A were 1.14-, 1.62-, 2.49- and 3.02-fold greater than that of TtXI-N91D at 75 °C, respectively. Over the pH range of 5.0–9.0, the activities of mutants D375G, K355A and V144A were greater than that of TtXI-N91D at 60 °C. The thermostability of all mutants, except K355A, was lower than that of TtXI-N91D. The results suggest that the activity of TtXI could be engineered by site-directed mutagenesis on the conserved residues at subunit interfaces. This method could be employed for improving the activity of other thermophilic XIs.  相似文献   

2.
We have identified the structural proteins of phage T4 precursor tails. Complete tails, labeled with 14C-labeled amino acids, were isolated from cells infected with mutants blocked in head assembly. The proteins were characterized by sodium dodecyl sulfate-acrylamide gel electrophoresis and subsequent autoradiography. The complete tails are made up of at least fifteen different species of phage proteins.To identify the genes specifying these proteins we prepared 14C-labeled amino acid lysates made with amber mutants defective in each of the twenty-one genes involved in tail assembly. Comparison of the gel pattern of the amber mutant lysates with wild type lysates enabled us to identify the following gene products, with molecular weights in parentheses: P6 (85,000); P7 (140,000); P8 (46,000); P9 (34,000); P10 (88,000); P11 (26,000); P12 (55,000); P15 (35,000); P18 (80,000); P19 (21,000); P29 (77,000). These eleven species are all structural proteins of the tail. The genetically unidentified tail proteins have molecular weights of 42,000, 41,000, 40,000 and 35,000. They are likely to be the products of known phage genes which were not resolved in the crowded middle region of the whole lysate gel patterns. The major tail proteins are all synthesized during the late part of the phage growth cycle.The mobilities of the proteins derived from tails did not differ from the mobilities of the proteins when derived from the unassembled pools of subunits accumulating in mutant infected cells, or when derived from complete phage particles.The genes for at least seven of the structural proteins are contiguous on the genetic map. Genes for proteins needed in many copies seem to be clustered separ- ately from genes whose products are needed in only a few copies. Consideration of protein sizes and published mapping data on phage T4 also suggest that the phage structural proteins are, on the average, much larger than the non-structural proteins.The requirement that at least fifteen different species of proteins must come together in forming a phage tail emphasizes the complexity of this morphogenetic process.  相似文献   

3.
Functions of gene C and gene D products of bacteriophage phi X 174.   总被引:14,自引:6,他引:8       下载免费PDF全文
Phage-related materials existing in cells infected with various mutants of bacteriophage phi chi 174 were investigated. A novel species of replicative-form (RF) DNA was found in cells infected with a phage mutant of gene B, C, D, F, or G. This species, called RFI, sedimented at a position between RFI and RFII in a neutral sucrose gradient. It was converted to RFI upon denaturation in alkali, denaturation in formamide and subsequent renaturation, or RNase treatment at low ionic strength. In cells infected with a phage mutant of gene C, RFI was derived from pulse-labeled RFII after a short chase. TLLS INFECTED WITH A MUTANT OF GENE B, D, or F. A possible function of the C gene product of phi chi 174 could be to prevent the conversion of RFII to RFI, thereby maintaining the availability of RFII to act as the template for single-stranded viral DNA synthesis. A protein complex containing no DNA, which sedimented with an S value of 108 in a sucrose gradient and contained virion proteins F, G, and H, and nonvirion protein D, was found in cells infected with the gene C mutant. A possible function of protein D was considered as a scaffolding protein for assembly of phage structural proteins.  相似文献   

4.
5.
A method has been developed to select proteins that are thermodynamically destabilized yet still folded and functional. The DNA encoding the B1 IgG-binding domain from Group G Streptococcus (Strp G) has been fused to gene III of bacteriophage M13. The resulting fusion protein is displayed on the surface of the phage thus enabling the phage to bind to IgG molecules. In addition, these phage exhibit a small plaque phenotype that is reversed by mutations that destabilize the Strp G domain. By selecting phage with large plaque morphology that retain their IgG-binding function, it is possible to identify mutants that are folded but destabilized compared with wild-type Strp G. Such mutants can be divided into three general categories: (1) those that disrupt packing of hydrophobic side chains in the protein interior; (2) those that destabilize secondary structure; and (3) those that alter specific hydrogen bonds involving amino acid side chains. A number of the mutants have been physically characterized by circular dichroism and nuclear magnetic resonance and have been shown to have structures similar to wild-type Strp G but stabilities that were decreased by 2–5 kcal/mol. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Summary Gene 32 of bacteriophage T4 codes for a single-stranded DNA binding protein. We have isolated mutants of Escherichia coli (called Tab32) that specifically restrict the growth of gene 32 missense mutants and allow normal growth of T4+. During infections of Tab32 with 32tsL171, large amounts of DNA are synthesized and late proteins are made, but very few progeny phage are produced. At least two bacterial mutations are necessary for the restrictive phenotype; these mutations have been mapped to about min 41 and min 64.  相似文献   

7.
8.
The P22 bacteriophage group is a subgroup of the λ phage supercluster, comprised of the three major sequence types Sf6, P22, and CUS-3, based on their capsid proteins. Our goal is to investigate the extent to which structure–function relationships are conserved for the viral coat proteins and I-domains in this subgroup. Sf6 is a phage that infects the human pathogen Shigella flexneri. The coat protein of Sf6 assembles into a procapsid, which further undergoes maturation during DNA packaging into an infectious virion. The Sf6 coat protein contains a genetically inserted domain, termed the I-domain, similar to the ones present in the P22 and CUS-3 coat proteins. Based on the P22 example, I-domains play important functional roles in capsid assembly, stability, viability, and size-determination. Here we report the 1H, 15N, and 13C chemical shift assignments for the I-domain of the Sf6 phage coat protein. Chemical shift-based secondary structure prediction and hydrogen-bond patterns from a long-range HNCO experiment indicate that the Sf6 I-domain adopts a 6-stranded β-barrel fold like those of P22 and CUS-3 but with important differences, including the absence of the D-loop that is critical for capsid assembly and the addition of a novel disordered loop region.  相似文献   

9.
Eighteen single amino acid substitutions in phage P22 coat protein cause temperature-sensitive folding defects (tsf). Three intragenic global suppressor (su) substitutions (D163G, T166I and F170L), localized to a flexible loop, rescue the folding of several tsf coat proteins. Here we investigate the su substitutions in the absence of the original tsf substitutions. None of the su variant coat proteins displayed protein folding defects. Individual su substitutions had little effect on phage production in vivo; yet double and triple combinations resulted in a cold-sensitive (cs) phenotype, consistent with a defect in assembly. During virus assembly and maturation, conformational switching of capsid subunits is required when chemically identical capsid subunits form an icosahedron. Analysis of double- and triple-su phage-infected cell lysates by negative-stain electron microscopy reveals an increase in aberrant structures at the cs temperature. In vitro assembly of F170L coat protein causes production of polyheads, never seen before in phage P22. Purified procapsids composed of all of the su coat proteins showed defects in expansion, which mimics maturation in vitro. Our results suggest that a previously identified surface-exposed loop in coat protein is critical in conformational switching of subunits during both procapsid assembly and maturation.  相似文献   

10.
The amino terminus of gap junction proteins, connexins, plays a fundamental role in voltage gating and ion permeation. We have previously shown with 1H NMR that the structure of the N-terminus of a representative connexin molecule contains a flexible turn around glycine 12 [P.E. Purnick, D.C. Benjamin, V.K. Verselis, T.A. Bargiello, T.L. Dowd, Arch. Biochem. Biophys. 381 (2000) 181-190] allowing the N-terminus to reside at the cytoplasmic entry of the channel forming a voltage-sensor. Previous functional studies or neuropathies have shown that the mutation G12Y and G12S form non-functional channels while functional channels are formed from G12P. Using 2D 1H NMR we show that similar to G12, the structure of the G12P mutant contains a more flexible turn around residue 12, whereas the G12S and G12Y mutants contain tighter, helical turns in this region. These results suggest an unconstrained turn is required around residue 12 to position the N-terminus within the pore allowing the formation of the cytoplasmic channel vestibule, which appears to be critical for proper channel function.  相似文献   

11.
The effects of Newcastle disease virus (NDV) fusion (F) glycoprotein cleavage mutants on the cleavage and syncytium-forming activity of the wild-type F protein were examined. F protein cleavage mutants were made by altering amino acids in the furin recognition region (amino acids 112 to 116) in the F protein of a virulent strain of NDV. Four mutants were made: Q114P replaced the glutamine residue with proline; K115G replaced lysine with glycine; double mutant K115G, R113G replaced both a lysine and an arginine with glycine residues; and a triple mutant, R112G, K115G, F117L, replaced three amino acids to mimic the sequence found in avirulent strains of NDV. All mutants except Q114P were cleavage negative and fusion negative. However, addition of exogenous trypsin cleaved all mutant F proteins and activated fusion. As expected for an oligomeric protein, the fusion-negative mutants had a dominant negative phenotype: cotransfection of wild-type and mutant F protein cDNAs resulted in an inhibition of syncytium formation. The presence of the mutant F protein did not inhibit cleavage of the wild-type protein. Furthermore, evidence is presented that suggests that the mutant protein and the wild-type protein formed heterooligomers. By measuring the syncytium-forming activity of the wild-type protein at various ratios of expression of mutant and wild-type protein, results were obtained that are most consistent with the notion that the size of the functionally active NDV F protein in these assays is a single oligomer, likely a trimer. That a larger oligomer, containing a mix of both wild-type and mutant F proteins, has partial activity cannot, however, be ruled out.  相似文献   

12.
Proline residues can play a major role in the secondary structure of proteins. In the extracellular ATP binding loop of P2X receptors there are four totally conserved proline residues (P2X1 receptor numbering; P93, P166, P228 and P272) and three less conserved residues P196 (six of seven isoforms), P174 and P225 (five of seven isoforms). We have mutated individual conserved proline residues in the human P2X1 receptor and determined their properties. Mutants were expressed in Xenopus oocytes and characterized using a two-electrode voltage clamp. Mutants P166A, P174A, P196A, P225A and P228A had no effect on ATP potency compared with wild-type and P93A had a fourfold decrease in ATP potency. The P272A, P272D and P272K receptor mutants were expressed at the cell surface; however, these mutants were non-functional. In contrast, P272I, P272G and P272F produced functional channels, with either no effect or a 2.5- or 6.5-fold increase in ATP potency, respectively. At P272F receptors the apparent affinity of the ATP analogue antagonist 2',3'-O-(2,4,6-trinitrophenyl)-ATP was increased by 12.5-fold. These results suggest that individual proline residues are not essential for normal P2X receptor function and that the receptor conformation around P272 contributes to ATP binding at the receptor.  相似文献   

13.
We have identified and characterized structural intermediates in phage P22 assembly. Three classes of particles can be isolated from P22-infected cells: 500 S full heads or phage, 170 S empty heads, and 240 S “proheads”. One or more of these classes are missing from cells infected with mutants defective in the genes for phage head assembly. By determining the protein composition of all classes of particles from wild type and mutant-infected cells, and examining the time-course of particle assembly, we have been able to define many steps in the pathway of P22 morphogenesis.In pulse-chase experiments, the earliest structural intermediate we find is a 240 S prohead; it contains two major protein species, the products of genes 5 and 8. Gene 5 protein (p5) is the major phage coat protein. Gene 8 protein is not found in mature phage. The proheads contain, in addition, four minor protein species, PI, P16, P20 and PX. Similar prohead structures accumulate in lysates made with mutants of three genes, 1, 2 and 3, which accumulate uncut DNA. The second intermediate, which we identify indirectly, is a newly filled (with DNA) head that breaks down on isolation to 170 S empty heads. This form contains no P8, but does contain five of the six protein species of complete heads. Such structures accumulate in lysates made with mutants of two genes, 10 and 26.Experiments with a temperature-sensitive mutant in gene 3 show that proheads from such 3? infected cells are convertible to mature phage in vivo, with concomitant loss of P8. The molecules of P8 are not cleaved during this process and the data suggest that they may be re-used to form further proheads.Detailed examination of 8? lysates revealed aberrant aggregates of P5. Since P8 is required for phage morphogenesis, but is removed from proheads during DNA encapsulation, we have termed it a scaffolding protein, though it may have DNA encapsulation functions as well.All the experimental observations of this and the accompanying paper can be accounted for by an assembly pathway, in which the scaffolding protein P8 complexes with the major coat protein P5 to form a properly dimensioned prohead. With the function of the products of genes 1, 2 and 3, the prohead encapsulates and cuts a headful of DNA from the concatemer. Coupled with this process is the exit of the P8 molecules, which may then recycle to form further proheads. The newly filled heads are then stabilized by the action of P26 and gene 10 product to give complete phage heads.  相似文献   

14.
Mammalian Na+/H+ exchanger isoform one (NHE1) is a plasma membrane protein responsible for pH regulation in mammalian cells. Excess activity of the protein promotes heart disease and is a trigger of metastasis in cancer. Inhibitors of the protein exist but problems in specificity have delayed their clinical application. Here we examined amino acids involved in two modeled inhibitor binding sites (A, B) in human NHE1. Twelve mutations (Asp159, Phe348, Ser351, Tyr381, Phe413, Leu465, Gly466, Tyr467, Leu468, His473, Met476, Leu481) were made and characterized. Mutants S351A, F413A, Y467A, L468A, M476A and L481A had 40–70% of wild type expression levels, while G466A and H473A expressed 22% ~ 30% of the wild type levels. Most mutants, were targeted to the cell surface at levels similar to wild type NHE1, approximately 50–70%, except for F413A and G466A, which had very low surface targeting. Most of the mutants had measurable activity except for D159A, F413A and G466A. Resistance to inhibition by EMD87580 was elevated in mutants F438A, L465A and L468A and reduced in mutants S351A, Y381A, H473A, M476A and L481A. All mutants with large alterations in inhibitory properties showed reduced Na+ affinity. The greatest changes in activity and inhibitor sensitivity were in mutants present in binding site B which is more closely associated with TM4 and C terminal of extracellular loop 5, and is situated between the putative scaffolding domain and transport domain. The results help define the inhibitor binding domain of the NHE1 protein and identify new amino acids involved in inhibitor binding.  相似文献   

15.
ATP-binding cassette (ABC) transporters play pivotal physiological roles in substrate transport across membranes, and defective assembly of these proteins can cause severe disease associated with improper drug or ion flux. The yeast protein Yor1p is a useful model to study the biogenesis of ABC transporters; deletion of a phenylalanine residue in the first nucleotide-binding domain (NBD1) causes misassembly and retention in the endoplasmic reticulum (ER) of the resulting protein Yor1p-ΔF670, similar to the predominant disease-causing allele in humans, CFTR-ΔF508. Here we describe two novel Yor1p mutants, G278R and I1084P, which fail to assemble and traffic similar to Yor1p-ΔF670. These mutations are located in the two intracellular loops (ICLs) that interface directly with NBD1, and thus disrupt a functionally important structural module. We isolated 2 second-site mutations, F270S and R1168M, which partially correct the folding injuries associated with the G278R, I1084P, and ΔF670 mutants and reinstate their trafficking. The position of both corrective mutations at the cytoplasmic face of a transmembrane helix suggests that they restore biogenesis by influencing the behavior of the transmembrane domains rather than by direct restoration of the ICL1-ICL4-NBD1 structural module. Given the conserved topology of many ABC transporters, our findings provide new understanding of functionally important inter-domain interactions and suggest new potential avenues for correcting folding defects caused by abrogation of those domain interfaces.  相似文献   

16.
Previously, we have shown that residues 73-92 (sequence DRFSVNLDVKHFSPEELKVK) in alphaB-crystallin are involved in preventing the formation of light scattering aggregates by substrate proteins. In this study, we made single substitutions of three conserved amino acid residues (H83 --> A, F84 --> G, and P86 --> A) and a nonconserved amino acid residue (K90 --> C) in the functional region of alphaB-crystallin and evaluated their role in anti-aggregation activity. Mutation of conserved residues led to changes in intrinsic tryptophan intensity, bis-ANS binding, and in the secondary and tertiary structures. The H83A mutation led to a twofold increase in molar mass, while the other mutants did not produce significant changes in the molar mass when compared to that of wild-type protein. The chaperone-like activity of the H83A mutant was enhanced by 15%-20%, and the chaperone-like activity of F84G and P86A mutants was reduced by 50%-65% when compared to the chaperone-like activity of wild-type alphaB-crystallin. The substitution of the nonconserved residue (K90 --> C) did not induce an appreciable change in the structure and function of the mutant protein. Fluorescence resonance energy transfer (FRET) assay demonstrated that destabilized ADH interacted near the K90 region in alphaB-crystallin. The data show that F84 and P86 residues are essential for alphaB-crystallin to effectively prevent the aggregation of substrate proteins. This study further supports the involvement of the residues in the 73-92 region of alphaB-crystallin in substrate protein binding and chaperone-like action.  相似文献   

17.
Summary Six missense point mutations in traA (WPFL43,44,45,46,47 and 51), the gene encoding F pilin in the transfer region of the F plasmid, have been characterized for their effect on the transfer ability, bacteriophage (R17, QB and fl) sensitivity and levels of piliation expressed by the plasmid. The sequence analysis of the first five of these mutations revealed two domains in the F pilin subunit exposed on the surface of the F pilus which mediate phage attachment. These two domains include residues 14–17 (approximately) and the last few residues at the carboxy-terminus of the pilin protein. One of these mutants had a pleiotropic affect on pilus function and was thought to have affected pilus assembly. The sixthe point mutant (WPFL51), previously thought to be in traA, was complemented by chimeric plasmids carrying the traG gene of the F transfer region, which may be involved in the acetylation of the pilin subunit. A traA nonsense mutant (JCFL1) carried an amber mutation near the amino-terminus which is well suppressed in SuI+ (supD) and SuIII+ (supF) strains. Neither the antigenicity of the pilin nor the efficiency of plating of F-specific bacteriophages were affected when this plasmid was harbored by either suppressor strain. A second amber mutant (JCFL25) which is not suppressible, carried its mutation in the codon for the single tryptophan in F pilin, suggesting that this residue is important in subunit interactions during pilus assembly. Two other point mutants (JCFL32 and 44) carried missense mutations in the leader sequence (positions 9 and 13) which affected the number of pili per cell presumably by altering the processing of propilin to pilin.  相似文献   

18.
Summary Fragments of DNA of the temperate phage P2, generated by treatment with the restriction enzyme PstI, have been cloned into the plasmid pBR322. One such fragment, which has its endpoints within phage genes T and C, carries the structural P2 int gene as well as its promoter and the phage att site. When introduced into a suitable bacterial host, the cloned fragment mediates the integration and excision of int - mutants of P2 and recombination within the phage att site in mixed infection. All these activities are independent of the orientation of the fragment within the plasmid.When introduced into minicells, the fragment produces, in addition to the products of genes D and U, a protein of 35–37,000 daltons identified as the int protein. A study of the map location of two amber int mutants, together with the sizes of the polypeptides they produce, indicates that the P2 int gene is transcribed from right to left on the P2 map, i.e. starting near gene C and proceeding toward att.  相似文献   

19.
Summary Mutants of P22 phage with abnormal density in CsCl solution (P22ndc phage) were analyzed in detail for this report. Two dimensional polyacrylamide gel electrophoresis revealed that wild-type P22ndc + phage virions contained a new protein (gpU) in addition to nine already identified proteins, while P22ndc lacked gpU. The molecular weight of gpU was essentially the same as that of gp5 (45 500), and one mature virion of phage P22ndc 1 contained as many as 30–50 molecules of gpU. As P22ndc is a plaque-forming phage, gpU cannot be essential for the growth and assembly of P22 phage. Both genetical and biochemical analysis of the phage DNA in the virion revealed that P22ndc phage contained 2%–4% longer DNA than wild type P22ndc +. A model is presented to account for the formation of P22ndc phage.  相似文献   

20.
Complementation analysis assigned the mutations of strains H5ts115 and H5ts116, two hexon-minus mutants, to the 100,000-dalton (100K) protein gene. Heterotypic marker rescue (i.e., type 5 adenovirus [Ad5] temperature-sensitive mutants DNA X EcoRI restriction fragments of Ad2 DNA) confirmed the results of previous marker rescue mapping studies, and the heterotypic recombinants yielded unique hybrid (Ad5-Ad2) 100K proteins which were intermediate in size between Ad5 and Ad2 proteins and appeared to be as functionally active as the wild-type 100K protein. Phenotypic characterization of these mutants showed that both the hexon polypeptides and the 100K polypeptides were unstable at the nonpermissive temperature, whereas fiber and penton were not degraded, and that the 100K protein made at 39.5 degrees C could not be utilized after a shift to the permissive temperature (32 degrees C). The role of the 100K protein in the assembly of the hexon trimer was also examined by in vitro protein synthesis. Normally, hexon polypeptides synthesized during an in vitro reaction are assembled into immunoreactive hexons. However, this assembly was inhibited by preincubation of the cell extract with anti-100K immunoglobulin G; neither anti-fiber immunoglobulin G nor normal rabbit immunoglobulin G inhibited hexon assembly. It is postulated that an interaction between the 100K protein and hexon polypeptides is required for effective assembly of hexon trimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号