首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vinter, Vladimir (Syracuse University, Syracuse, N.Y.), and Ralph A. Slepecky. Direct transition of outgrowing bacterial spores to new sporangia without intermediate cell division. J. Bacteriol. 90:803-807. 1965.-A direct transition was observed of the primary cell developed after germination of Bacillus cereus spores into new sporangia without intermediate division stages. Two simple methods were used for replacement of outgrowing spores into diluted medium or saline. Elongated primary cells prevented from division by limitation of nutrients in the suspending medium were able to form new forespores in 8 hr and sporangia in 12 hr. These new sporangia were still marked by attached envelopes of the original spore. Under the same conditions, cells replaced during the first divisions quickly lysed. Spores formed in the elongated primary cell during "microcycle sporogenesis" possessed normal heat resistance and refractility and were later released from sporangia.  相似文献   

2.
An accelerated release of free spores from sporangia of Bacillus cereus NCIB-8122 and Bacillus subtilis SMYW was induced by the addition of the basic peptide antibiotics, polymyxin B or colistin (100 μg/ml), to sporangia formed in liquid Bactopeptone medium. Destruction of sporangial cell walls of B. cereus prelabelled with 3H-4-diaminopimelic acid commenced shortly after the addition of either antibiotic, the label being gradually released into the medium. Normal free spores were released following the addition of antibiotics to sporangia containing refractile spores (stages IV-V of sporogenesis). Earlier additions induced the lysis of both compartments of the sporangium, accompanied by the release of already-synthesized dipicolinic acid and alreadyaccumulated 45calcium. The heat resistance and germination ability of spores released in the presence of the antibiotics were the same as those of control spores released by long-term spontaneous lysis of sporangia. Similar effects of the antibiotics were observed with B. subtilis SMYW. Results obtained were used firstly for fast preparation of relatively clean free spores and secondly for the characterization of the developmental stage of sporogenesis at which the spore becomes independent of the maternal cell. It reaches this property at the end of stage IV and during stage V.  相似文献   

3.
SYNOPSIS Ultrastructure of the plasmodium wall and of sporogenesis were studied in Myxosoma funduli Kudo infecting the gills of Fundulus kansae (Garman). Plasmodia were located within the lamellar tissues adjacent to sinuses and capillaries. The plasmodium wall consisted of a single unit membrane which was continuous with numerous pinocytic canals extending into the parasite ectoplasm. The plasmodium membrane was covered by a surface coat of almost uniform thickness which prevented direct parasite-host cell contact. Numerous generative cells and cell aggregates, representing early stages of spore development, were seen in immature plasmodia. Later stages of spore development, including mature spores, were observed in older plasmodia. Sporogenesis was initiated by envelopment of one generative cell, the sporont, by a 2nd, nondividing cell, the envelope cell. The sporont and its progeny proceeded through a series of divisions until there were 10 cells, all compartmentalized within the envelope cell. Subsequently, the 10 cells became structurally differentiated and arranged into two 5-celled spore-producing units, each consisting of 1 binucleate sporoplasm and 2 capsulogenic cells, all surrounded by 2 valvogenic cells. Observations of later developmental stages revealed the major events of capsulogenesis, valvogenesis, and sporoplasm maturation, which occurred concomitantly during spore construction.  相似文献   

4.
The brown alga Zonaria farlowii which exhibits an alternation of isomorphic generations has been found to be a particularly suitable organism for a comparative study of game to gene sis, sporogenesis, and embryonic development. The germinations of the zygote and spore have been compared and found to be similar. The development of the oogonium and sporangium has been studied with the light and electron microscopes, in an attempt to discern ontogcnetical similarities or differences. The timing and periodicity of oogenesis and sporogenesis were found to differ: oogonial development requires a lunar month from the time of its initiation to the time of egg release which occurs around the first quarter of the moon, whereas the sporangium does not follow this periodicity. The development of the spore embryos and zygotic embryos is essentially the same. It appears that the difference between the 2 phases of the life cycle exists only in the later stages of oogenesis and sporogenesis. These differences continue in the egg until fertilization, after which the zygote has the same cytoplasmic configuration as the spore. It is also notable that during release of the spore it must increase in size considerably since before germination begins it has attained the size of the egg.  相似文献   

5.
The relationship of the synthesis of new cell wall in the postgerminative development ofBacillus cereus spores to protein and ribonucleic acid synthesis was studied through the incorporation of14C-diaminopimelic acid. The spores were not capable of synthesizing cell wall immediately after germination. A very short, period of protein synthesis was first needed, the messenger ribonucleic acid for these proteins being formed at the end of the depolymerization phase. On blocking cell wall synthesis with penicillin or cycloserine, swelling and the outset of elongation were normal. In the presence of penicillin, the cells afterwards disintegrated during the elongation phase, while with cycloserine, elongation of the cells was only arrested and later atypical division occurred. The findings are discussed from the aspect of the possibility of the participation of part of the preexisting diaminopimelic acid-containing spore material in the envelope system of the outgrowing cell.  相似文献   

6.
Role of acetate in sporogenesis of Bacillus cereus   总被引:2,自引:1,他引:1  
Nakata, H. M. (Washington State University, Pullman). Role of acetate in sporogenesis of Bacillus cereus. J. Bacteriol. 91:784-788. 1966.-The distribution of radioactivity associated initially with acetate-2-C(14) was followed during sporogenesis of Bacillus cereus strain T. This was accomplished by replacing cells committed to sporulation into a chemically defined sporulation medium. It was observed that 65 to 70% of the initial radioactivity was incorporated into poly-beta-hydroxybutyrate, whereas 20 to 25% was found in other cellular constituents. Virtually no radioactivity was lost as C(14)O(2) during the first 5 to 6 hr after replacement. Then, a gradual evolution of C(14)O(2) coincident with poly-beta-hydroxybutyrate degradation, was observed until about the ninth hour. By this time, the polymer was essentially depleted, and the first spore structures were observed in stained preparations. The total amount of radioactivity lost as C(14)O(2) was 20 to 25%. The major portion of products derived from poly-beta-hydroxybutyrate was incorporated into the spores. As much as 17% of the radioactivity associated with the spores was found in dipicolinic acid. More than 50% was located in spore proteins, 20 to 25% in the hot 5% trichloroacetic acid-soluble fraction, 4 to 5% in the lipid fraction, and 15 to 20% in the cold 5% trichloroacetic acid-soluble fraction. These data, accounting for 70 to 75% of the initial radioactivity, confirmed the hypothesis that the major role of acetate, and subsequently of poly-beta-hydroxybutyrate, in sporulation of B. cereus T is to provide carbon precursors and energy for sporogenesis.  相似文献   

7.
Penicillin at concentrations non-inhibitory to the vegetative growth was found to inhibit sporulation inBacillus polymyxa 2459. The effect of penicillin was shown to be at the level of spore-specific mucopeptide synthesis. Penicillin had no effect on the early events such as DNA and protein synthesis in sporogenesis The sensitive period of inhibition was between T0 to T2 hours of sporulation.  相似文献   

8.
Bacillus cereus T, sporulating in a chemically defined medium under optimum conditions, requires substrate quantities of glutamate during the first 4 h of sporogenesis. Seventy percent of the glutamate utilized was catabolized to CO2 during this period, with the remaining glutamate carbon assimilated into various spore constituents, principally protein and nucleic acid. The importance of glutamate as the primary source of reducing potential and energy for early stages of spore formation was investigated. Although the relative efficiency at which tricarboxylic acid cycle intermediates substituted for glutamate was suggestive of oxidation via the tricarboxylic acid cycle, only partial inhibition of glutamate oxidation by fluoroacetate was observed.  相似文献   

9.
When cells of either Bdellovibrio bacteriovorus 109J or Bdellovibrio stolpii UKi2 were subjected to osmotic shock by treatment with sucrose-EDTA and MgCl2 solutions, only trace amounts of proteins or enzyme activities were released into the shock fluid. In contrast, when nongrowing cells were converted to motile, osmotically stable, peptidoglycan-free spheroplasts by penicillin treatment, numerous proteins were released into the suspending fluid. For both species, this suspending fluid contained substantial levels of 5'-nucleotidase, purine phosphorylase, and deoxyribose-phosphate aldolase. Penicillin treatment also released aminoendopeptidase N from B. bacteriovorus, but not from B. stolpii. Penicillin treatment did not cause release of cytoplasmic enzymes such as malate dehydrogenase. The data indicated that bdellovibrios possess periplasmic enzymes or peripheral enzymes associated with the cell wall complex. During intraperiplasmic bdellovibrio growth, periplasmic and cytoplasmic enzymes of the Escherichia coli substrate cell were not released upon formation of the spherical bdelloplast during bdellovibrio penetration. Most of the E. coli enzymes were retained within the bdelloplast until later in the growth cycle, when they became inactivated or released into the suspending buffer or both.  相似文献   

10.
A protein of apparent mol.wt. 35000 that is extractable from the purified coat fraction of Bacillus megaterium KM spores is synthesized during sporulation as a precursor protein from which a 12-13 amino acid peptide is removed. Cleavage of this small peptide is delayed until 60-90 min after precursor synthesis and is concomitant with the morphological appearance of stage VI. The addition of chloramphenicol, subsequent to precursor synthesis, prevents the appearance of this late processing event. Two-dimensional non-equilibrium pH-gradient gel electrophoresis of the integument extract of forespores isolated at stage V from sporangia pulse-labelled with L-[35S]methionine 1 h before isolation, revealed both unprocessed and processed components. Similar analysis of total protein from the corresponding mother cells revealed only the unprocessed component in relatively small amounts, suggesting that, although the protein may be synthesized in the mother-cell compartment, processing may be restricted to the forespore. Peptide analysis by limited proteolysis was used to examine the relationship between the 35000- and a 17500-mol.wt. coat protein. The possible implications of limited proteolytic processing to maturation of the spore coat are discussed.  相似文献   

11.
Preexisting14C-DAP in vegetative cells ofBacillus cereus is not incorporated into the spores, but is released into the medium after sporogenesis is complete. Exogenous14C-DAP added to the medium before sporulation is incorporated intensively into the sporangia and practically all of it is taken up by the spores. During sporogenesis, two periods of increased incorporation of14C into hot TCA-precipitate of cells are found after adding14C-DAP— one before formation of the spores, when14C-lysine formed by decarboxylation is incorporated together with14C-DAP, and one during the “whitening” phase, when any14C-lysine is no longer incorporated. The incorporation of exogenous14C-lysine into the sporangial proteins is also markedly elevated during the presporulation phase and at the outset of sporogenesis.  相似文献   

12.
Turnover of mucopeptide during the life cycle ofBacillus megaterium   总被引:11,自引:1,他引:10  
Sporogenic and asporogenicBacillus megaterium strains, as well asBacillus cereus degraded the murein component of the cell wall labelled with14C-diaminopimelic acid to TCA-soluble compounds during growth. The rate of murein turnover was about 15% during one generation in all three cases. The addition of chloramphenicol instantaneously markedly decreased the degradation rate, whereas in the presence of penicillin the degradation proceeded at the beginning at a rate comparable with that in the control and decreased only after a certain time interval. The cell wall degradation was considerably or completely stopped during the stationary phase of growth. In sporogenic strains ofBacillus megaterium andBacillus cereus the release of mature spores was associated with a new wave of the wall degradation, during which the wall of the sporangial cell was completely digested to TCA-soluble fragments. Free spores contained practically no mucopeptide component (cortex or spore wall) originating from the wall of the vegetative cell. A possible existence of a stable fraction of the cell wall not subject to turnover was investigated by measuring the3H/14C ratio in cells labelled simultaneously with3H (or14C)-diaminopimelic acid and14C (or3H)-leucine. The ratio changed during five generations, remaining constant later. This indicates that a certain portion of murein could be stable. The murein degradation during growth was not associated with secretion or release of a significant quantity of autolytic enzymes into the medium. The wall was apparently attacked from the inside. On the other hand, the release of the spore was accompanied by an increasing autolytic activity in the medium. This latter activity reached values corresponding to 3–8 μg lysozyme/ml. The results published here were presented at the 2nd Harden Conference “Cell walls and cell membranes”, Wye, Kent, England in September 1970.  相似文献   

13.
The Bangia phase of Bangia fuscopurpurea was grown in laboratory culture in a variety of photoperiod and temperature regimes. Plants of the Bangia phase grown from 2 types of asexual spores, monospores and conchospores, exhibited growth differences under similar growing conditions. Plants derived from monospores grew more rapidly and matured earlier than those derived from carpospores. Day length and temperature were found to significantly influence growth rule, maturation, and plant size. Long day lengths resulted in more rapid growth in filament length and diameter and earlier spore formation and spore release. Maximum filament length was observed in a 12/12 hr light-dark cycle at 15 C. Spore formation and release were delayed by decreasing day length or temperature. Temperature and photoperiod were also found to influence the type of spores produced by the Bangia phase. When grown at 22 C, the Bangia phase produced only monospores, which reproduced the Bangia phase. At 9 C, with photoperiods of 11 hr or more of light, the Bangia phase produced carpospores which gave rise to the alternating Conchocelis phase. The conditions under which sporogenesis occurred determined the spore type differentiated.  相似文献   

14.
The penicillin tolerance exhibited by amino acid-deprived Escherichia coli has been previously proposed to be a consequence of the stringent response. Evidence indicating that penicillin tolerance is directly attributable to guanosine 3',5'-bispyrophosphate (ppGpp) overproduction and not to some other effect of amino acid deprivation is now presented. Accumulation of ppGpp in the absence of amino acid deprivation was achieved by the controlled overexpression of the cloned relA gene, which encodes ppGpp synthetase I. The overproduction of ppGpp resulted in the inhibition of both peptidoglycan and phospholipid synthesis and in penicillin tolerance. The minimum concentration of ppGpp required to establish these phenomena was determined to be 870 pmol per mg (dry weight) of cells. This represented about 70% of the maximum level of ppGpp accumulated during the stringent response. Penicillin tolerance and the inhibition of peptidoglycan synthesis were both suppressed when ppGpp accumulation was prevented by treatment with chloramphenicol, an inhibitor of ppGpp synthetase I activation. Glycerol-3-phosphate acyltransferase, the product of plsB, was recently identified as the main site of ppGpp inhibition in phospholipid synthesis (R. J. Health, S. Jackowski, and C. O. Rock, J. Biol. Chem. 269:26584-26590, 1994). The overexpression of the cloned plsB gene reversed the penicillin tolerance conferred by ppGpp accumulation. This result supports previous observations indicating that the membrane-associated events in peptidoglycan metabolism were dependent on ongoing phospholipid synthesis. Interestingly, treatment with beta-lactam antibiotics by itself induced ppGpp accumulation, but the maximum levels attained were insufficient to confer penicillin tolerance.  相似文献   

15.
Experimental conditions were developed whereby a culture of Bacillus cereus formed spores with reasonable synchrony following a growth cycle of some 8 hours. The cytology of this metamorphosis was studied by dark phase contrast, bright-field microscopy and electron microscopy of thin sections. Particular attention has been paid to the changes in chromatin patterns and these have been correlated with quantitative chemical estimations of the nucleic acids. The cell commencing sporulation contains two compact chromatin bodies and twice the spore amount of deoxyribonucleic acid. Following fusion of the two chromatin bodies, one-half of this chromatin becomes located at a cell end. A transverse septum growing inwards from, and remaining attached to, the inner surface of the cell wall separates this end-piece of chromatin and some associated cytoplasm from the rest of the cell to form the primordial spore. Although the synthesis of deoxyribonucleic acid ceases during the segregation process, it recommences in this organism and continues at a linear rate as the spore develops. Tracer studies with radioactive phosphorus indicated that this further synthesis is confined to the non-spore portion of the sporangium. Although the net synthesis of ribonucleic acid ceased prior to the onset of sporogenesis, some evidence of a turnover of this fraction during the sporulation process was found.  相似文献   

16.
Bacillus polymyxa var. Ross. producing polymyxin M and Bacillus polymyxa 153 producing polymyxin B form spores during submerged cultivation when the rate of biosynthesis of antibiotic peptides is low and when the production of antibiotics is over. However, sporogenesis is stimulated if polymyxins are added at the early stage of cultural growth. Inhibition of the synthesis of antibiotics suppresses the formation of spores. Substances other than polymyxins do not exhibit such a specific effect on sporogenesis. The fact that the culture requires endogenous polymyxins which are most effective in the period prior to the appearance of spores in the culture suggests the regulatory action of these peptides at the stage between vegetative growth and spore formation in Bacillus polymyxa.  相似文献   

17.
Unique crystalline structures were found by X-ray diffractometry to be present in spore coats of Bacillus subtilis. By crystallographical and chemical studies of the purified spore coats it was found that these crystalline structures of the spore coats were essentially similar to those of α- and β-keratin, and that the spore coats were composed of keratin-like substance (or keratin). This keratin-like substance was found to be synthesized during sporogenesis from sulfur-containing water-soluble substances in the cells.  相似文献   

18.
Microcycle sporogenesis induced in Bacillus cereus T by phosphate limitation occurs over a narrow range of phosphate to spore inoculum ratios. Sufficient phosphate is required to satisfy the demands for a twofold increase in deoxyribonucleic acid; net ribonucleic acid synthesis is not required. The total ribonucleic acid content of the culture was variable, and deoxyribonucleic acid synthesis was restricted to a twofold increase. Developmental changes during outgrowth occurred synchronously, whereas enzyme synthesis was periodic. The timing of the synthesis of tricarboxylic cycle enzymes, extracellular protease, arginase, histidase, and alkaline phosphatase was measured. Histidase could be induced after 2.5 hr throughout microcycle sporogenesis. Several other features of macromolecular synthesis during microcycle sporogenesis are described. Differences between this pattern and those observed during outgrowth leading to cell division are discussed. A technique for accurately estimating the levels and time of synthesis of incompletely extractable, labile enzymes is also presented.  相似文献   

19.
From the stage of a completed membranous forespore to that of a fully ripened free spore, synchronously sporulating cells of a variant Bacillus cereus were studied by cytological and chemical methods. Particular attention was paid to the development of the three spore layers—cortex, coat, and exosporium—in relation to the forespore membrane. First, the cortex is laid down between the recently described (5) double layers of the forespore membrane. Then when the cortex is ⅓ fully formed, the spore coat and exosporium are laid down peripheral to the outer membrane layer covering the cortex. As these latter layers appear, the spores, previously dense by dark phase contrast, gradually "whiten" or show an increase in refractive index. With this whitening, calcium uptake commences, closely followed by the synthesis of dipicolinic acid and the process is terminated, an hour later, with the formation of a fully refractile spore. In calcium-deficient media, final refractility is lessened and dipicolinic acid is formed only in amounts proportional to the available calcium. If calcium is withheld during the period of uptake beyond a critical point, sporulating cells lose the ability to assimilate calcium and to form normal amounts of dipicolinic acid. The resulting deficient spores are liberated from the sporangia but are unstable in water suspensions. Unlike ripe spores, they do not react violently to acid hydrolysis and, in thin sections, their cytoplasmic granules continue to stain with lead solutions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号