首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sixty-six isolates of basidiomycete fungi were screened for the ability to synthesize cellulase. The effect of temperature on cellulase activity was studied for eight basidiomycete strains as perspective producers of ethanol. The temperature optima of enzyme activity ranged between 26 and 32°C. Direct conversion of Na-carboxymethyl cellulose, microcrystalline cellulose and rye straw were studied for seven basidiomycetes strains: Fomitopsis pinicola MT-5.09, F. pinicola MT-5.21, Piptoporus betulinus MT-30.04, Fomes fomentarius MT-4.05, F. fomentarius MT-4.23, Trametes hirsuta MT-24.24, Flammulina velutipes MT-3.03 Maximum ethanol production from Na-carboxymethyl cellulose (1.3 g/dm3) was achieved by strain F. velutipes MT-3.03. Strain F. fomentarius MT-4.05 more effectively converted rye straw to ethanol with yield of 1.1 g/dm3.  相似文献   

2.
3.
Gluconacetobacter xylinus (formerly Acetobacter xylinum and presently Komagataeibacter medellinensis) is known to produce cellulose as a stable pellicle. However, it is also well known to lose this ability very easily. We investigated the on and off mechanisms of cellulose producibility in two independent cellulose-producing strains, R1 and R2. Both these strains were isolated through a repetitive static culture of a non-cellulose-producing K. medellinensis NBRC 3288 parental strain. Two cellulose synthase operons, types I and II, of this strain are truncated by the frameshift mutation in the bcsBI gene and transposon insertion in the bcsCII gene, respectively. The draft genome sequencing of R1 and R2 strains revealed that in both strains the bcsBI gene was restored by deletion of a nucleotide in its C-rich region. This result suggests that the mutations in the bcsBI gene are responsible for the on and off mechanism of cellulose producibility. When we looked at the genomic DNA sequences of other Komagataeibacter species, several non-cellulose-producing strains were found to contain similar defects in the type I and/or type II cellulose synthase operons. Furthermore, the phylogenetic relationship among cellulose synthase genes conserved in other bacterial species was analyzed. We observed that the cellulose genes in the Komagataeibacter shared sequence similarities with the γ-proteobacterial species but not with the α-proteobacteria and that the type I and type II operons could be diverged from a same ancestor in Komagataeibacter.  相似文献   

4.
In spite of the self-cleaning property of its leaves called the lotus effect, leaves of lotus (Nelumbo nucifera) provide a habitat for an unknown fungal diversity. The aim of this study was to detect and identify fungi from leaves of N. nucifera, including ectophytic, parasitic and endophytic fungi, in Taiwan using different collection strategies, as well as morphological and diverse molecular markers established in the different systematic groups of fungi. Among ectophytic and parasitic fungi, a new species of Dissoconium and of Pseudocercospora are described, respectively. Phyllosticta nelumbonis Sawada is transferred to Diaporthe. Among plant parasitic fungi, Erysiphe takamatsui and Ps. nymphaeacea are recorded in Taiwan for the first time. Euryale is recorded as a new host genus for Ps. nymphaeacea. The basidiomycetous yeast Fereydounia khargensis is recorded for the first time from living plants and in East Asia. Endophytic fungi from lotus were studied for the first time. From 1002 plant segments, 476 endophytic isolates were produced in culture, comprising 33 typical terrestrial species mainly belonging to the genera Colletotrichum (mainly C. siamense), Diaporthe (D. tulliensis and D. ueckerae) and Fusarium (F. solani species 6, hitherto known from clinical samples), as well as to Xylariaceae, but no Ingoldian fungi. Most isolates were from leaf laminas (71%) compared to those from petioles (29%). From this observation, we conclude that the fungi of the aquatic lotus plant appear to have terrestrial origin and, after dispersal by wind and in spite of the lotus effect, may enter the plant from the lamina. Only three species isolated as endophytes were also found as ectophytic or parasitic fungi.  相似文献   

5.
Using chromatography on different matrixes, three β-glucosidases (120, 116, and 70 kDa) were isolated from enzymatic complexes of the mycelial fungi Aspergillus japonicus, Penicillium verruculosum, and Trichoderma reesei, respectively. The enzymes were identified by MALDI-TOF mass-spectrometry. Substrate specificity, kinetic parameters for hydrolysis of specific substrates, ability to catalyze the transglucosidation reaction, dependence of the enzymatic activity on pH and temperature, stability of the enzymes at different temperatures, adsorption ability on insoluble cellulose, and the influence of glucose on catalytic properties of the enzymes were investigated. According to the substrate specificity, the enzymes were shown to belong to two groups: i) β-glucosidase of A. japonicus exhibiting high specific activity to the low molecular weight substrates cellobiose and pNPG (the specific activity towards cellobiose was higher than towards pNPG) and low activity towards polysaccharide substrates (β-glucan from barley and laminarin); ii) β-glucosidases from P. verruculosum and T. reesei exhibiting relatively high activity to polysaccharide substrates and lower activity to low molecular weight substrates (activity to cellobiose was lower than to pNPG).  相似文献   

6.
We investigated the involvement of microorganisms in the rapid reed decay of roofs thatched with water reed. Numerous bacteria and fungi were isolated by enrichment cultures from reed samples and from fungal fruit bodies on roofs. All strains were characterised in respect to their abilities to degrade cellulose, hemicelluloses and the lignin model substance Poly-R-478. Only 15 of the 92 isolated bacterial strains were capable of degrading cellulose and hemicelluloses. However, nearly all 61 of the identified fungal isolates had these abilities. Nevertheless, only 14 of the isolated fungal strains as well as a reference isolate of Trametes versicolor were capable of degrading Poly-R-478. The ability of the microorganisms to attack complete reed was assessed using a newly developed test system which measures the loss of dry weight during the incubation. A significant loss of dry weight was apparent only in tests using the ligninolytic fungi Pycnoporus cinnabarinus, Trametes versicolor, Phlebia tremellosa and some Mycena species, but not in the case of the majority of cellulolytic bacteria and fungi. From these results, we conclude that ligninolytic fungi are capable of destroying complete reed structure and that they play the key role in the process of the rapid decay of roofs thatched with reed. Directly after the initial lignin attack, cellulose and hemicellulose were degraded to a great extent, evidenced by the large loss of dry weight (up to 72 %), which significantly exceeds the lignin content of reed (ca. 15 %). However, after the initial attack by ligninolytic fungi, bacteria or other fungi capable of degrading cellulose and hemicelluloses may contribute to the progressive decay of reed under natural conditions. Furthermore, we show that the rate of decay depends on the source of the reed and on the reed quality.  相似文献   

7.
Lytic polysaccharide monooxygenases (PMO) discovered several years ago are enzymes classified as oxidoreductases. In nature, they participate in microbial degradation of cellulose together with cellulases that belong to the hydrolytic type of enzymes (class of hydrolases). Three PMO from ascomycetes–Thielavia terrestris, Trichoderma reesei, and Myceliophthora thermophila–were isolated and purified to homogeneous state using various types of chromatography. The first two enzymes are recombinant proteins heterologously expressed by the Penicillium verruculosum fungus, while the third is a native PMO secreted by M. thermophila. When acting on microcrystalline cellulose, all these PMOs displayed synergism with the cellulase complex of the P. verruculosum fungus. Replacing 10% of cellulases (by protein concentration) with PMO in the presence of 6.25 mM gallic acid or 2.5 μM of cellobiose dehydrogenase from M. thermophila, used as electron donors for PMO, resulted in the 17-31% increase in the yield of reducing sugars after 24-48 h of the enzymatic reaction.  相似文献   

8.
Aciculosporium and Heteroepichloë (Clavicipitaceae) are characteristic bambusicolous fungi in east Asia. In this study, we examined their intergeneric relationships based on the ALDH1-1 gene, which encodes a member of the aldehyde dehydrogenase family. In the clavicipitaceous fungi examined in this study, the nucleotide sequence of the third exon of ALDH1-1 (Exon-3) is 889 bp in length and has no insertion/deletion. A phylogenetic tree based on Exon-3 indicated that the clavicipitaceous fungi could be divided into two large groups: Cordyceps, Nomuraea, and Ustilaginoidea species formed a paraphyletic group, and the other grass biotrophic species formed a monophyletic group. This monophyletic group was further divided into three groups with high bootstrap support: i.e., species with Neotyphodium anamorphs (e.g., Epichloë), species with Ephelis anamorphs (e.g., Heteroepichloë), and Aciculosporium-Claviceps species. We discuss the relationships among Aciculosporium, Heteroepichloë, and other clavicipitaceous fungi.  相似文献   

9.

Objectives

To evaluate the crystallinity index of the cellulose produced by Escherichia coli Nissle 1917 after heterologous expression of the cellulose synthase subunit D (bcsD) gene of Gluconacetobacter xylinus BPR2001.

Results

The bcsD gene of G. xylinus BPR2001 was expressed in E. coli and its protein product was visualized using SDS-PAGE. FTIR analysis showed that the crystallinity index of the cellulose produced by the recombinants was 0.84, which is 17% more than that of the wild type strain. The increased crystallinity index was also confirmed by X-ray diffraction analysis. The cellulose content was not changed significantly after over-expressing the bcsD.

Conclusion

The bcsD gene can improve the crystalline structure of the bacterial cellulose but there is not any significant difference between the amounts of cellulose produced by the recombinant and wild type E. coli Nissle 1917.
  相似文献   

10.
Dust storms carry large amounts of plant detritus and microorganisms that may cause diseases in humans, animals or plants. These storms are frequent in Kuwait throughout the year. This research was conducted to identify the fungal species carried by the dust storms in Kuwait, originating from the northwesterly direction, with emphasis on plant pathogens. Fungi were isolated from settled dust samples and identified using established microbiological and molecular approaches. Fungal isolates identified as Fusarium oxysporum from settled dust were examined for pathogenicity using a number of crop plants. In total, 17 genera of fungi were identified in the dust samples. These fungi included plant pathogens or facultative plant parasites that were transported in the dust storms as viable propagules. The most common dust-carried fungi belonged to the genera Fusarium, Alternaria, Ulocladium, Phoma, Aspergillus, Acremonium and Penicillium. The F. oxysporum isolates that had been characterized by partial 18S rRNA gene sequencing were pathogenic, causing root and stem rot in tomato, bean and cucumber, but not squash.  相似文献   

11.
The development of Fusarium culmorum and Pseudomonas fluorescens in soil, and the relations between them, were studied using membrane filters containing the fungus, the bacterium, or both microorganisms; the filters were incubated in soil. F. culmorum was identified by indirect immunofluorescence; the GUS-labeled strain was used to visualize P. fluorescens. It was found that F. culmorum introduced in soil can develop as a saprotroph, with the formation of mycelium, macroconidia, and a small amount of chlamydospores. Introduction of glucose and cellulose resulted in increased density of the F. culmorum mycelium and macroconidia. P. fluorescens suppressed the development of the F. culmorum mycelium in soil, but stimulated chlamydospore formation. Decreased mycelial density in the presence of P. fluorescens was more pronounced in soil without additions and less pronounced in the case of introduction of glucose or cellulose. F. culmorum had no effect on P. fluorescens growth in soil.  相似文献   

12.
Phytohormones, such as auxin (IAA) and gibberellin (GA), are known to be essential for fruit development. We utilized GA-deficient (gib-3) and diageotropica (dgt) tomato mutants to elucidate the effects of single hormones in the pericarp. The application of IAA or GA, respectively, to gib-3 or dgt single mutants induced a significant morphological difference in the fruit set. We found that IAA application induced cell division in the gib-3 pericarp and that GA application did not increase the cell layers in the dgt pericarp. In molecular studies, the expression levels of SlARF6, SlARF8, SlARF10 and SlARF16 were downregulated by IAA application, whereas the expression of their regulators miRNA160 and miRNA167 was upregulated by IAA application in gib-3 plants. Furthermore, the expression levels of SlARF6, SlARF8, SlARF10 and SlARF16 were upregulated by GA application, whereas the expression levels of miRNAs were reduced in the dgt mutant. These results imply that the expression levels of SlARF6, SlARF8, SlARF10 and SlARF16 were negatively correlated with the number of cell layers in the pericarp during fruit set. To further support this hypothesis, 35s:mSlARF10 transgenic plants resistant to SlmiR160 cleavage of SlARF10 mRNA were used to investigate the cell layers in fruit. These results revealed that mSlARF10 overexpression indeed resulted in fewer cell layers than in wild type fruit. Together, our data suggest that GA- and IAA-mediated miRNAs and their target ARFs influence the formation of pericarp cell layers during fruit set development.  相似文献   

13.
Zoysiagrass (Zoysia japonica Steud.) is an important turfgrass species used in golf courses and athletic fields. However, zoysiagrass is susceptible to large patch disease caused by Rhizoctonia solani AG2-2 (IV). Chitinases are pathogen-related (PR) proteins induced by viruses, bacteria, and fungi that hydrolyze chitin. Recently, we isolated a class II chitinase gene (Zjchi2) from zoysiagrass. The purified recombinant Zjchi2 showed broad-spectrum activity against various fungi, including R. solani AG2-2 (IV). In the current study, we generated transgenic zoysiagrass overexpressing Zjchi2 and then verified the resistance of transgenic plants to R. solani AG2-2 (IV). Polymerase chain reaction and Southern blot hybridization showed the integration of transgenes in zoysiagrass genomes and constitutive expression of Zjchi2, respectively. Antifungal activity was enhanced significantly in the transgenic zoysiagrass compared with wild-type plants. To our knowledge, this report is the first on the antifungal activity of a class II chitinase in transgenic zoysiagrass.  相似文献   

14.
To investigate contamination of ground red pepper with fungi and mycotoxin, we obtained 30 ground red pepper samples from 15 manufacturers in the main chili-pepper-producing areas in Korea. Fungal contamination was evaluated by spreading diluted samples on potato dextrose agar plates. The total fungi counts ranged from 0 to 7.3 × 103 CFU/g. In the samples, the genus Aspergillus had the highest incidence, while Paecilomyces was isolated most frequently. The next most frequent genera were Rhizopus, Penicillium, Cladosporium, and Alternaria. Within Aspergillus, A. ruber was predominant, followed by A. niger, A. amstelodami, A. ochraceus, A. terreus, A. versicolor, A. flavus, and A. fumigatus. The samples were analyzed for aflatoxins, ochratoxin A, and citrinin by ultra-perfomance liquid chromatography (UPLC) with a fluorescence detector. Ochratoxin A was detected from three samples at 1.03?2.08 μg/kg, whereas no aflatoxins or citrinin were detected. To test the potential of fungal isolates to produce aflatoxin, we performed a PCR assay that screened for the norB-cypA gene for 64 Aspergillus isolates. As a result, a single 800-bp band was amplified from 10 A. flavus isolates, and one Aspergillus sp. isolate. UPLC analyses confirmed aflatoxin production by nine A. flavus isolates and one Aspergillus sp. isolate, which produced total aflatoxins at 146.88?909.53 μg/kg. This indicates that continuous monitoring of ground red pepper for toxigenic fungi is necessary to minimize mycotoxin contamination.  相似文献   

15.
This paper describes a novel species of ericoid mycorrhizal fungus from Australia, Cairneyella variabilis, Midgley and Tran-Dinh, gen. nov. sp. nov. The genome of C. variabilis was sequenced and a draft genome assembled. The draft genome of C. variabilis is 52.4 Mbp in length, and to our knowledge, this is the first study to present a genome of an ericoid mycorrhizal fungus from the southern hemisphere. Using the SignalP and dbCAN bioinformatic pipelines, a study of the catabolic potential of C. variabilis was undertaken and showed genes for an array of degradative enzymes, most of which appear to be secreted from the hyphae, to access a suite of different carbon sources. Isolates of C. variabilis have been previously shown to utilise cellulose, carboxymethyl cellulose (CMC), cellobiose, xylan, pectin, starch and tannic acid for growth, and in the current study, putative enzymes for these processes were revealed. These enzymes likely play key roles in nutrient cycling and other edaphic processes in heathland environments. ITS phylogenetic analyses showed C. variabilis to be distinct from the fungi of the “Hymenoscyphus ericae aggregate”.  相似文献   

16.
The genus Scedosporium, which comprises at least five clinically relevant species, i.e. Scedosporium apiospermum, Scedosporium boydii, Scedosporium aurantiacum, Scedosporium dehoogii and Scedosporium minutisporum, ranks the second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF). This colonization of the airways is thought to contribute to the inflammatory reaction leading to a progressive deterioration of the lung function. Additionally, these colonizing fungi may lead to severe disseminated infections in case of lung transplantation. Therefore, considering the low susceptibility of Scedosporium species to all current antifungal drugs, preventive measures should be defined to reduce the risk of exposure to these fungi for non-colonized CF patients. With this in mind, several studies have been conducted to elucidate the ecology of these fungi and to define possible sources of patient contamination. This review will summarize the major outcomes of those studies, including: the clear demonstration that ecological niches of Scedosporium species are strongly impacted by human activities, and the ability of Scedosporium species to degrade aliphatic and aromatic pollutants which supports the high occurrence of these species in contaminated soils and polluted waters and makes them promising candidates for bioremediation purposes. Finally, prospects for future research in this field are proposed.  相似文献   

17.
Interactions between trees and ectomycorrhizal fungi are critical to the growth and survival of both partners. However, ectomycorrhizal symbiosis has barely been explored in endangered trees, and no information is available regarding soil spore banks of ectomycorrhizal fungi from forests of threatened trees. Here, we evaluated soil spore banks of ectomycorrhizal fungi from endangered Japanese Douglas-fir (Pseudotsuga japonica) forests using bioassay approaches with congeneric P. menziesii and Pinus densiflora seedlings in combination with molecular identification techniques. Rhizopogon togasawariana was predominant in soil propagule banks and was found in all remaining P. japonica forests when assayed with P. menziesii, while no colonization of this fungus was observed on Pinus seedlings. Given the observed specificity of R. togasawariana for P. menziesii and its phylogenetic position within the Pseudotsuga-specific Rhizopogon lineage, its geographical distribution is likely restricted to the remaining Japanese Douglas-fir forests, indicating a high extinction risk for this fungus as well as its endangered host. Spore banks of R. togasawariana remained highly infective after preservation for 1 year or heat treatment at 70 °C, suggesting an ecological strategy of establishing ectomycorrhizal associations on regenerating Japanese Douglas-fir seedlings after disturbance, as observed in other Rhizopogon–Pinaceae combinations. Therefore, the regeneration of Japanese Douglas-fir seedlings may depend largely on the soil spore banks dominated by R. togasawariana, which has co-evolved with the Japanese Douglas-fir for over 30 million years. More attention must be paid to underground ectomycorrhizal fungi for the conservation of endangered tree species, especially in the era of human-induced mass extinction.  相似文献   

18.
For matching the new fungal nomenclature to abolish pleomorphic names for a fungus, a genus Pseudocercospora s. str. was suggested to host holomorphic Pseudocercosproa fungi. But the Pseudocercosproa fungi need extra phylogenetic loci to clarify their taxonomy and diversity for their existing and coming species. Internal transcribed spacer 2 (ITS2) secondary structures have been promising in charactering species phylogeny in plants, animals and fungi. In present study, a conserved model of ITS2 secondary structures was confirmed on fungi in Pseudocercospora s. str. genus using RNAshape program. The model has a typical eukaryotic four-helix ITS2 secondary structure. But a single U base occurred in conserved motif of U-U mismatch in Helix 2, and a UG emerged in UGGU motif in Helix 3 to Pseudocercospora fungi. The phylogeny analyses based on the ITS2 sequence–secondary structures with compensatory base change characterizations are able to delimit more species for Pseudocercospora s. str. than phylogenic inferences of traditional multi-loci alignments do. The model was employed to explore the diversity of endophytic Pseudocercospora fungi in poplar trees. The analysis results also showed that endophytic Pseudocercospora fungi were diverse in species and evolved a specific lineage in poplar trees. This work suggested that ITS2 sequence–structures could become as additionally significant loci for species phylogenetic and taxonomic studies on Pseudocerospora fungi, and that Pseudocercospora endophytes could be important roles to Pseudocercospora fungi’s evolution and function in ecology.  相似文献   

19.
The effect of ethoxylated oleyl cetyl alcohol (Henkel, Serbia) on the growth and metabolic activity of Aspergillus niger and Fusarium lateritium was in the focus of this paper. The fungi were isolated from wastewater of Lepenica River (Kragujevac, Serbia) at a place where municipal wastewater discharged into the river. The fungi were grown in Czapek-Dox liquid nutrient medium without and with addition of 0.5% pollutant. The physico-chemical and biochemical changes of pH, total biomass dry weight, quantity of free and total organic acids, proteolytic activity and quality of carbohydrates were evaluated from 4-th to 19-th day of fungal growth. The capacity of fungi to decrease concentration of pollutant in medium was determined by cobalt thiocyanate method. The pollutant caused an inhibitory effect on biomass dry weight of A. niger and F. lateritium for 8.50 and 30.61%, respectively. Among tested fungi, A. niger had the better biodegradation capacity (83%) than F. lateritium (65%). Alkaline protease activity of A. niger enhanced in the presence of pollutant for 7.6% whereas the enzyme of F. lateritium retained about 62.2% activity. Overall, the obtained results indicate the potential application of tested fungi in wastewater treatment, detergent industry and biotechnology.  相似文献   

20.

Background

A recently constructed cellulolytic Yarrowia lipolytica is able to grow efficiently on an industrial organosolv cellulose pulp, but shows limited ability to degrade crystalline cellulose. In this work, we have further engineered this strain, adding accessory proteins xylanase II (XYNII), lytic polysaccharide monooxygenase (LPMO), and swollenin (SWO) from Trichoderma reesei in order to enhance the degradation of recalcitrant substrate.

Results

The production of EG I was enhanced using a promoter engineering strategy. This provided a new cellulolytic Y. lipolytica strain, which compared to the parent strain, exhibited higher hydrolytic activity on different cellulosic substrates. Furthermore, three accessory proteins, TrXYNII, TrLPMOA and TrSWO, were individually expressed in cellulolytic and non-cellulolytic Y. lipolytica. The amount of rhTrXYNII and rhTrLPMOA secreted by non-cellulolytic Y. lipolytica in YTD medium during batch cultivation in flasks was approximately 62 and 52 mg/L, respectively. The purified rhTrXYNII showed a specific activity of 532 U/mg-protein on beechwood xylan, while rhTrLPMOA exhibited a specific activity of 14.4 U/g-protein when using the Amplex Red/horseradish peroxidase assay. Characterization of rhTrLPMOA revealed that this protein displays broad specificity against β-(1,4)-linked glucans, but is inactive on xylan. Further studies showed that the presence of TrLPMOA synergistically enhanced enzymatic hydrolysis of cellulose by cellulases, while TrSWO1 boosted cellulose hydrolysis only when it was applied before the action of cellulases. The presence of rTrXYNII enhanced enzymatic hydrolysis of an industrial cellulose pulp and of wheat straw. Co-expressing TrXYNII and TrLPMOA in cellulolytic Y. lipolytica with enhanced EG I production procured a novel engineered Y. lipolytica strain that displayed enhanced ability to degrade both amorphous (CIMV-cellulose) and recalcitrant crystalline cellulose in complex biomass (wheat straw) by 16 and 90%, respectively.

Conclusions

This study has provided a potent cellulose-degrading Y. lipolytica strain that co-expresses a core set of cellulolytic enzymes and some accessory proteins. Results reveal that the tuning of cellulase production and the production of accessory proteins leads to optimized performance. Accordingly, the beneficial effect of accessory proteins for cellulase-mediated degradation of cellulose is underlined, especially when crystalline cellulose and complex biomass are used as substrates. Findings specifically underline the benefits and specific properties of swollenin. Although in our study swollenin clearly promoted cellulase action, its use requires process redesign to accommodate its specific mode of action.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号