首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The urinary fluoride level has been studied in 307 subjects consuming drinking waters of different fluoride concentrations. The urinary fluoride level was found to increase with the fluoride content of the drinking water. The urinary F level of the population group drinking water of optimum fluoride concentration was 1.14 mg of fluoride per litre. Thus, in regions where the drinking water contains an insufficient amount of fluoride, the fluoride content of domestic salt must be adjusted so as to ensure an about 1.14 mg/litre urinary F level of the population.  相似文献   

2.
The antiarrhythmic activity of fluoride was studied in a model of CaCL2-induced heart arrhythmias in male albino rats. The prolonged intake of sodium fluoride with drinking water (2 mg/l for 1 month) significantly reduced the severity of arrhythmias that was evident as an increase in the latency and a decrease in the frequency and duration of arrhythmias. A less pronounced effect was noted when the concentration of sodium fluoride was increased to 5 mg/l. At larger concentrations (11 mg/l) the fluoride exerted a toxic effect and potentiated the arrhythmogenic action of CACL2. The antiarrhythmic action of fluoride in low concentrations may be associated with the blockade of an inward Ca current.  相似文献   

3.
The Orangi river is an important all-year source of water for wildlife in the northern part of the Serengeti National Park. At two points along the river in the Banagi area, tributaries draining the adit and tailings of the Kilimafeza mine impact the Orangi. The former Au-Cu mine is subject to occasional wet season flooding leading to the release of iron ochres from the adit and physical as well as chemical mobilization of tailings material. The unpolluted river chemistry is essentially Na-Ca-HCO 3 and well-buffered. Drainage water; from the tailings are characterized by low pH (2.3) and high concentration of sulphate (up to 3280 mg/l), aluminium (275 mg/l), arsenic (324 mg/l), copper (125 mg/l), iron (622 mg/l), lead (21 mg/l), manganese (65 mg/l), and zinc (126 mg/l). Adit-drainage waters are typically of a lower pH (4.6) and have a lower concentration of sulphate (up to 1840 mg/l) and metals (up to 25 mg/l Al, 92 mg/l As, 42 mg/l Cu, 258 mg/l Fe, 9.6 mg/l Pb, 53 mg/l Mn, and 102 mg/l Zn). Mixing of these acidic waters with the alkaline river leads to rapid metal precipitation as Fe-ochre coatings on clastic sediment. This effect is more noticeable in the dry season. Consequently, although the tributaries draining the two sources are heavily contaminated, the effective buffering of the mine drainage waters restricts any potential pollution to within 1 km of the mine workings. Faecal coliforms show an antipathetic relationship to low pH and high metal conditions. The only mobile metals in the water outside this area are Mn and Zn and their contamination can be biologically monitored using a protozoan-based bioassay.  相似文献   

4.
The adverse effects of ingested fluoride were investigated. The bone-age of children consuming drinking water containing optimum (about 1 mg/l) fluoride concentration with regard to caries prophylaxis was compared with the bone-age of those consuming drinking water containing low (0.14-0.26 mg/l) fluoride concentration. The examinations were conducted on 7-14-year old Hungarian children. The bone-age was determined by the TW2 method. No significant difference was found between the bone-age of the children belonging to the group consuming water with optimum fluoride concentration and those in the other group consuming water with low fluoride concentration.  相似文献   

5.
The concentration of fluoride and nitrate in groundwater is usually higher than that of surface water. The main objective of this study was to estimate the health-risk assessment associated with fluoride, nitrate, and nitrite in drinking water in Sanandaj and its villages. The number of samples in the Sanandaj and its rural was 106. The average concentration of fluoride in urban and rural drinking water was 0.22 mg/l and 0.27 mg/l, respectively. Fluoride concentration was also close to urban and rural drinking water. The concentration of nitrate in urban and rural drinking water was in the range between 0.28–27.77 mg/l and 1.28–80 mg/l, respectively. The concentration of nitrate reported in rural samples was higher than that of urban samples. The maximum concentration of nitrate reported in this study was 80 mg/l. The mean CDI for nitrate in the men, women, and children was 0.4258, 0.5110, and 1.1454, respectively. The findings of this study indicated that all three groups studied were exposed to nitrate contact hazards (HQ > 1). Therefore, the HQ in each of the three groups was higher than 1, which should be carefully monitored and necessary measures should be performed.  相似文献   

6.
The effect of urinary level of a prolonged consumption of table salts containing 200, 250 or 350 mg/kg of fluoride has been studied. Urinary F concentration was increasing with all the three kinds of salt. In the group of consumers using 200 and 250 mg F/kg salt the equilibrium has been reached, but the urinary F level was still below that observed in populations who are drinking water of 1 mg/l F concentration. The equilibrium in the 2--14-year age groups consuming 350 mg F/kg salt could not yet set in. It is concluded that even a mixture of 350 mg F/kg is not in excess of the optimum and is far from the tolerated limit. Thus, this latter mixture may be used for caries prevention in areas with F-deficient drinking water, although it may be still less than the optimum.  相似文献   

7.
The presence of fluoride in drinking water can be either beneficial or harmful for human health, depending on its concentration. Most adverse effects of fluoride are observed at high concentrations (above 1.5 mg/L). This study was aimed to evaluate the effect of fluoride concentrations in drinking water on spontaneous abortion in two regions: one with low fluoride concentration and another with high fluoride concentration. The results showed that there is a relationship between the concentration of fluoride in drinking water and abortion, so that the risk of abortion increased at high concentrations of fluoride. However, further studies are needed to clarify this relationship due to the small area and population in this study.  相似文献   

8.
Tilapia mossambica fingerlings, 5 weeks of age, were reared in simulated fresh water medium which was either free of manganese or supplied with manganese at a concentration of 2.5 µg/l. They were fed synthetic diets which were either deficient (2.8 mg Mn/kg dry diet) or supplied with manganese (35.5 mg Mn/kg dry diet). The feeding tests were carried for 10 weeks. Best growth was obtained when the element was supplied in both food and water. When manganese was absent or was supplied only in water or food, the following symptoms were noted: (1) Poor growth, (2) reduced food consumption, (3) loss of equilibrium, and (4) increased mortality. From the results, the daily requirement for manganese by Tilapia for growth and development was calculated to be 1.7 mg/kg live fish.This paper is based on a part of a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate College of University of Washington, Seattle, Washington.  相似文献   

9.
OBJECTIVE: To examine the effects of migration, diversity of migrant origins, commuting, and socioeconomic status on the incidence of acute lymphoblastic leukaemia in childhood. DESIGN: Poisson regression analysis of incidence rates in relation to the variables of interest. SETTING: The 403 county districts of England and Wales during 1979-85. SUBJECTS: Children aged under 15 years. RESULTS: There were significant trends in the incidence of lymphoblastic leukaemia at ages 0-4 and 5-9 years with the proportion of children in a district who had recently entered the district. While there was no consistent relation between the proportion of recent incomers in the total population of a district and its incidence rate, the combination of higher migration with greater diversity of origins or distance moved was associated with higher incidence in both age groups. Incidence increased significantly at age 0-4 with the level of employment in a district and at age 5-9 with the proportion of households with access to a car. No significant trends were found with commuting. CONCLUSIONS: The results for level of child migration and diversity of total migration provide evidence of an effect of population mixing on the incidence of childhood leukaemia which is not restricted to areas experiencing the most extreme levels of mixing.  相似文献   

10.
Beer is a widely consumed drink throughout the world, and because its manufacture involves the use of water, beer can be, in some cases, a source of fluorides. For this reason, the objective of this study was to determine the concentration of fluorides in 50 samples of beers from different sources sold in two different types of container (aluminum can and glass bottle). The possible significant differences between the different types of packaging and the intake of fluoride from the consumption of these beers were evaluated. The concentration of fluoride in beers has been determined using the potentiometric method of fluoride determination by standard addition. The concentration of fluoride ranged between 0.06 and 1.77 mg/L. In general, the concentration was below 1 mg/L, except for three beer samples from Ireland and the USA, whose concentration was over 1.5 mg/L. No significant differences were found between the types of packaging. The contribution of fluoride to the diet from beer consumption is not high (<27%); however, it is necessary to warn consumers whenever they are in areas of high concentrations of fluoride in the water supply.  相似文献   

11.
Groundwater is the main source of drinking water in both rural and urban areas of the Pratapgarh district in the eastern Uttar Pradesh. Fifty-five groundwater samples were collected from 17 blocks of the Pratapgarh district and analyzed for fluoride (F?) and other water quality parameters (pH, EC, TDS, turbidity, Cl?, HCO3?, SO42?, NO3?, Ca2+, Mg2+, Na+, K+, silica and total hardness) to assess its suitability for drinking uses. The fluoride concentration in the analyzed groundwater of the Pratapgarh district varied between 0.41 and 3.99 mg/L. Fluoride concentration in about 78% of the groundwater samples exceeded the acceptable level of 1.0 mg/L, while in 70% samples it exceeded the maximum permissible limit of 1.5 mg/L. A geographic information system (GIS) tool was used to study the spatial variation of fluoride concentrations in the groundwater of the Pratapgarh district. Fluoride is positively correlated with pH (0.36) and HCO3? (0.22) and negatively with Ca2+ (?0.23) and Mg2+ (?0.08), suggesting dissolution of fluoride-bearing minerals with the precipitation of Ca/Mg carbonate in the alkaline environment. The maximum exposure dose to fluoride for adults in the study area was found to be 6.8 times higher than the minimum risk level (MRL) of 0.05 mg kg?1 day?1 estimated by the Agency for Toxic Substances and Disease Registry (ATSDR).  相似文献   

12.
Arsenic and fluoride are potent toxicants, widely distributed through drinking water and food and often result in adverse health effects. The present study examined the effects of sodium meta-arsenite (100 mg/l in drinking water) and sodium fluoride (5 mg/kg, oral, once daily), administered either alone or in combination for 8 weeks, on various biochemical variables indicative of tissue oxidative stress and cell injury in Swiss albino male mice. A separate group was first exposed to arsenic for 4 weeks followed by 4 weeks of fluoride exposure. Exposure to arsenic or fluoride led to a significant depletion of blood delta-aminolevulinic acid dehydratase (ALAD) activity and glutathione (GSH) level. These changes were accompanied by increased level of blood and tissues reactive oxygen species (ROS) level. An increase in the level of liver and kidney thiobarbituric acid reactive substance (TBARS) along with a concomitant decrease in the activities of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) and reduced GSH content were observed in both arsenic and fluoride administered mice. The changes were significantly more pronounced in arsenic exposed animals than in fluoride. It was interesting to observe that during combined exposure the toxic effects were less pronounced compared to the effects of arsenic or fluoride alone. In some cases antagonistic effects were noted following co-exposure to arsenic and fluoride. Arsenic and fluoride concentration increased significantly on exposure. Interestingly, their concentration decreased significantly on concomitant exposure for 8 weeks. However, the group which was administered arsenic for 4 weeks followed by 4 weeks of fluoride administration showed no such protection suggesting that the antagonistic effect of fluoride on arsenic or vice versa is possible only during interaction at the gastro intestinal sites. These results are new and interesting and require further exploration.  相似文献   

13.
Phytoremediation, popularly known as ‘green technology’ has been employed in the present investigation to examine the potential of fluoride removal from water by some aquatic plants. Fluoride contamination in drinking water is very much prevalent in different parts of the world including India. Batch studies were conducted using some aquatic plants e.g., Pistia stratiotes, Eichhornia crassipes, and Spirodela polyrhiza which profusely grow in natural water bodies. The experimental data exhibited that all the above three aquatic floating macrophytes could remove fluoride to some relative degree of efficiency corresponding to initial concentration of fluoride 3, 5, 10, 20 mg/l after 10 days exposure time. Result showed that at lower concentration level i.e., 3 mg/L removal efficiency of Pistia stratiotes (19.87%) and Spirodela polyrhiza (19.23%) was found to be better as compared to Eichhornia crassipes (12.71%). Some of the physiological stress induced parameters such as chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, total protein, catalase, and peroxidase were also studied to explore relative damage within the cell. A marginal stress was imparted among all the plants for lower concentration values (3 mg/L), whereas at 20 mg/l, maximum damage was observed.  相似文献   

14.
This study describes the effects of fluoride exposure on the protein profile, glycoprotein pattern, and total sialic acid concentration of serum in rabbits. For this aim; 20 healthy New Zealand rabbits were used. The rabbits were divided into two equal groups each with ten animals according to their weighing: control group and experimental group. The rabbits in control group were given drinking tap water containing 0.29 mg/l sodium fluoride and experimental group received the same tap water to which was added 40 mg/l sodium fluoride for 70 days. Blood samples were taken from each rabbit on day 70. Serum fluoride concentrations were measured by a fluoride-specific ion electrode in serum. The fluoride levels in the serum were found as 18.4 (±1.58) μg/L in control and 301.3 (±52.18) μg/L in fluoride exposed rabbits. The sialic acid levels were found as 69.2 (±0.32) mg/dL in control and 43.4 (±0.13) mg/dL in fluoride exposed group. The electrophoretic patterns of serum proteins, glycoproteins, and total sialic acid concentration were determined. Fifteen different protein fractions with molecular weights ranging from 22 to 249 kDa were displayed in the serum protein electrophoretic gel of both groups. The raw concentrations of the protein fractions decreased in fluoride exposed rabbits as compared with the control rabbits. The serum glycoprotein pattern revealed seven major protein bands from 47 to 167 kDa in experimental and control groups. The slight decrease of raw concentration of the protein bands in glycoprotein pattern of serum was observed in fluoride toxication comparing to control. The results suggest that serum TSA determination and serum protein electrophoresis can be used to evaluate prognosis of fluoride exposure as a supplementary laboratory test in combination with clinical and other laboratory findings of fluorosis.  相似文献   

15.
Copper effects on human health represent a relevant issue in modern nutrition. One of the difficulties in assessing the early, acute effects of copper ingested via drinking water is that the taste of copper may influence the response and the capacity to taste copper in different waters is unknown. The purpose of the study was to determine the taste threshold of copper in different types of water, using soluble and insoluble salts (copper sulfate and copper chloride). Copper-containing solutions (range 1.0-8.0 mg/l Cu) were prepared in tap water, distilled deionized water and uncarbonated mineral water. Sixty-one healthy volunteers (17-50 years of age), with no previous training for sensory evaluation, participated in the study. A modified triangle test was used to define the taste threshold value. The threshold was defined as the lowest copper concentration detected by 50% of the subjects assessed. To evaluate the olfactory input in the threshold value obtained, 15 of 61 subjects underwent a second set of triangle tests with the nose open and clamped, using distilled water with copper sulfate at a concentration corresponding to the individual's threshold. The taste threshold in tap water was 2.6 mg/l Cu for both copper sulfate and copper chloride. The corresponding values for distilled deionized water were 2.4 and 2.5 mg/l Cu for copper sulfate and copper chloride, respectively. In uncarbonated mineral water the threshold values were slightly higher, 3.5 and 3.8 mg/l Cu for copper sulfate and for copper chloride, respectively, which are significantly higher than those observed in tap and distilled waters (P < 0.01, Kruskal-Wallis test). The taste threshold did not change significantly when the nose was clamped. In conclusion, the median values for copper taste threshold were low, ranging between 2.4 and 3.8 mg/l Cu, depending on the type of water.  相似文献   

16.
BackgroundFluoride is an inorganic element, which can be found in high concentrations in groundwater. Its consumption and exposure have consequences on human health. The objective of this study was to evaluate fluoride exposure and develop a health risk assessment in children from an urban area with hydrofluorosis in Mexico.MethodsWater fluoride levels in active wells were provided by the Water State Agency and divided into three zones: agriculture zone (Zone A), metallurgical zone (Zone B), and industrial zone (Zone C). Urinary fluoride levels were determined by potentiometric method using an ion-selective electrode. Health risk assessment was performed through Monte Carlo model analysis and hazard quotient was calculated.ResultsAccording to fluoride well concentration, all zones have high concentration especially Zone B (2.55 ± 0.98 mg/L). Urinary fluoride concentrations were highest in children in Zone B (1.42 ± 0.8 mg/L). The estimated median daily intake dose of fluoride was 0.084 mg/Kg-day for the children living in zone B. The highest mean HQ value was to Zone B (1.400 ± 0.980), followed by Zone C (0.626 ± 0.443).ConclusionThe levels of fluoride exposure registered are a potential risk to generate adverse health effects in children in the San Luis Potosi metropolitan area.  相似文献   

17.
On a global scale, pathogenic contamination of drinking water poses the most significant health risk to humans. However, significant risks to human health may also result from exposure to nonpathogenic, toxic contaminants that are often ubiquitous in waters. The purpose of this study is to determine the levels of heavy metal and fluoride contaminants in water wells used in the Al-Baha region, Saudi Arabia, to evaluate if the levels of metals will have non-carcinogenic effects. Samples were collected from private wells in the area and were analyzed for chemical contamination using approved methods of collection and analysis. Chromium, manganese, zinc, iron, and fluoride were detected in all samples, and were selected for toxicological evaluation. Exposure through ingestion and dermal contact were the scenarios proposed in this study. Chronic daily intakes (CDIs) were estimated for both routes and then compared with health guideline values. The non-cancer risk estimations show that manganese, chromium, and zinc individually have oral Hazard Quotient (HQ) values less than a value of one. Iron and fluoride were found to have oral HQ values greater than 1 in some samples. Also, on considering the additive effect of the contaminants we found that some samples have Hazard Index (HI) values greater than 1, which indicates that there is a concern for chronic non-cancer adverse health effects in case of oral and dermal routes of exposure to water from these wells.  相似文献   

18.
Increased exposure to fluorine-containing compounds leads to accumulation of fluorides in hard tissues of bones and teeth, which may result in numerous skeletal and dental disorders. This study evaluates the influence of methionine and vitamin E on fluoride concentration in bones and teeth of rats subjected to long-term exposure to sodium fluoride in drinking water. The study was conducted in 30 3-month-old female Wistar FL rats. The animals were divided into five groups, six rats per group. The control group consisted of rats receiving only distilled water as drinking water. All other groups received NaF in the amount of 10 mg/kg of body mass/day in their drinking water. In addition, respective animal groups received: NaF + Met group—10 mg of methionine/kg of body mass/day, NaF + Met + E group—10 mg of methionine/kg of body mass/day and 3 mg of vitamin E (tocopheroli acetas)/rat/day and NaF + E group—3 mg of vitamin E/rat/day. Femoral bones and incisor teeth were collected for the study, and the fluoride concentration was determined using a fluoride ion-selective electrode. Fluoride concentration in both bones and teeth was found to be higher in the NaF and NaF + Met groups compared to the control group. In groups NaF + Met + E and NaF + E, the study material contained much lower fluoride concentration compared to the NaF group, while the effect was more prominent in the NaF + E group. The results of the studies indicate that methionine and vitamin E have opposite effects on accumulation of fluorides in hard tissue in rats. By stimulating fluoride accumulation, methionine reduces the adverse effect of fluorides on soft tissue, while vitamin E, which prevents excessive accumulation of fluorides in bones and teeth, protects these tissues from fluorosis. Therefore, it seems that combined application of both compounds would be optimal for the prevention of the adverse effects of chronic fluoride intoxication.  相似文献   

19.
The aim of the study was to assess the fluoride exposure of pregnant women living in Poznan (Poland) by examination of fluoride levels in blood plasma.

The subjects of the study were 31 pregnant women aged 22–34 years in the course of regular pregnancy. Data concerning the sources of fluoride exposure such as diet, oral hygiene measures and topical application of fluoride procedures, were collected from each individual with a questionnaire. Samples of blood plasma were drawn in the 28th, 33rd week of pregnancy and during delivery. The analysis evaluating the fluoride concentration in the samples was carried out with the use of fluoride electrode ORION (model 96-09). The data were statistically analyzed using the program Statistica for Windows.

Mean value of fluoride concentration in the samples of blood plasma from the 28th week of pregnancy was lower than the mean concentration detected in the 33rd week of pregnancy (3.29 and 3.73 μmol/l, respectively). These values suggest that apart from drinking water, there were other important sources of fluoride in the examined sample.

The results indicate that a reliable assessment of fluoride exposure in a given population cannot be based solely on the concentration of fluoride in drinking water. Relatively high levels of fluoride in blood plasma of examined women suggest that there is no need for fluoride supplementation in this group of patients.  相似文献   


20.
The purpose of this investigation was to study the genotoxic potential of fluoride (in the form of sodium fluoride, NaF) using in vitro and in vivo sister-chromatid exchange (SCE) assays with Chinese hamster cells. The NaF concentrations used in cultures of Chinese hamster ovary (CHO) cells ranged from 0 to 6.3 mM, both with and without S9 activation. Fluoride analysis of the culture medium demonstrated that it contained little indigenous fluoride, and the concentration of added fluoride was not affected by the components of the medium or the S9 mix. The CHO cells cultured in 6.3 mM NaF almost vanished, and at the concentration of 5.3 mM NaF in cultures without S9 microsome, only M1 cells were observed. In in vivo studies, Chinese hamsters were intubated with NaF dosages of 0, 0.1, 1.0, 10, 60 and 130 mg/kg, and the bone marrow (CHBM) cells were examined for SCE frequencies. Bone fluoride data showed that the intubated NaF was effectively absorbed. Death occurred in 3 of the 8 animals given 130 mg NaF/kg. The results indicated that NaF, in dosages up to 5.3 mM in CHO cell cultures and 130 mg/kg in in vivo CHBM cells, did not significantly increase the SCE frequencies over those observed in the negative (distilled water) controls. However, examination of the cell cycle revealed an inhibitory effect of NaF on cell proliferation with doses of NaF at or greater than 1.0 mM in cultured CHO cells and at or greater than 60 mg NaF/kg in in vivo CHMB cells. The results of the present study indicated an inhibition of the cell cycle and death of the cells with increasing concentrations of fluoride but not effect of fluoride on SCE frequency in CHO and CHBM cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号