首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metallothioneins (MTs) are ubiquitous, low‐molecular weight, cysteine‐rich proteins. Despite a well‐established protective role in metal excess detoxification, there is little data about their putative physiological functions, commonly assumed to be metal homeostasis and redox equilibrium. Protein–protein interactions should have provided useful information to unveil unsuspected functions, but reports on MT interactions are scarce. This is probably due to the MT metal‐dependent 3D structure, a fact that has been seldom taken into account when performing proteomic interaction assays. In the present work, we have detected that the two major D. melanogaster isoforms (MtnA and MtnB) interact with the peroxiredoxin (Prx) encoded by the gene Jafrac1, both in a clear metal‐dependent pattern. The MT–Prx interaction is further confirmed in Saccharomyces cerevisiae by assaying both yeast MTs (Crs5p and Cup1p) versus Tsa1p and Tsa2p, the Jafrac1 homologous Prxs in this organism. Thus, a new methodological approach to detect MT‐interacting proteins in different proteomes is established on the basis of assaying MTs in the form of different metal complexes. Furthermore, new perspectives to investigate the often hypothesized contribution of MTs to the redox physiological networks are open.  相似文献   

2.
目的:探索利用酿酒酵母系统表达乙型肝炎病毒(HBV)preS/S基因。方法:利用PCR技 术,以HBV病毒DNA为模板,体外扩增HBV preS/S基因。然后构建重组表达载体pESC-preS/S。 用LiAc法转化酿酒酵母YPH50,选取重组菌进行培养,并诱导表达外源蛋白。提取蛋白浓缩后 进行SDS-PAGE分析,并经Western blot分析鉴定。结果:实验结果表明重组菌能够表达HBV preS/S蛋白。结论:利用酿酒酵母系统可成功表达HBV preS/S基因,为制备新型预防性疫苗提供 条件。  相似文献   

3.
Construction and microscopic imaging of protein fusions to green fluorescent protein (GFP) have revolutionised our understanding of bacterial structure and function. We have undertaken a systematic study of the localisation of over 100 Bacillus subtilis proteins, following the development of high-throughput construction and analysis procedures. We focused on proteins linked in various ways to the DNA replication machinery, as well as on proteins exemplifying a range of other cellular functions and structures. The results validate the approach as a way of obtaining systematic protein localisation information. They also provide a range of novel biological insights, particularly through the identification of a number of proteins not previously known to be associated with the DNA replication factory.  相似文献   

4.
5.
6.
The tryptophan analog, 5-hydroxytryptophan (5HW), has a significant absorbance between 310–320 nm, which allows it to act as an exclusive fluorescence probe in protein mixtures containing a large number of tryptophan residues. Here for the first time a method is reported for the biosynthetic incorporation of 5HW into an expressed protein, the Y57W mutant of the Ca2+ binding protein, oncomodulin. Fluorescence anisotropy and time-resolved fluorescence decay measurements of the interaction between anti-oncomodulin antibodies and the 5HW-incorporated oncomodulin conveniently provide evidence of complex formation and epitope identification that could not be obtained with the natural amino acid. This report demonstrates the significant potential for the use or 5HW as an intrinsic probe in the study of structure and dynamics of protein—protein interactions.  相似文献   

7.
Previous communications from this laboratory have indicated that there exists a thiamine-binding protein in the soluble fraction of Saccharomyces cerevisiae which may be implicated to participate in the transport system of thiamine in vivo.In the present paper it is demonstrated that both activities of the soluble thiamine-binding protein and thiamine transport in S. cerevisiae are greatest in the early-log phase of the growth and decline sharply with cell growth. The soluble thiamine-binding protein isolated from yeast cells by conventional methods containing osmotic shock treatment appeared to be a glycoprotein with a molecular weight of 140 000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The apparent Kd of the binding for thiamine was 29 nM which is about six fold lower than the apparent Km (0.18 μM) of thiamine transport. The optimal pH for the binding was 5.5, and the binding was inhibited reversibly by 8 M urea but irreversibly by 8 M urea containing 1% 2-mercaptoethanol. Several thiamine derivatives and the analogs such as pyrithiamine and oxythiamine inhibited to similar extent both the binding of thiamine and transport in S. cerevisiae, whereas thiamine phosphates, 2-methyl-4-amino-5-hydroxymethylpyrimidine and O-benzoylthiamine disulfide did not show similarities in the effect on the binding and transport in vivo. Furthermore, it was demonstrated by gel filtration of sonic extract from the cells that a thiamine transport mutant of S. cerevisiae (PT-R2) contains the soluble binding protein in a comparable amounts to that in the parent strain, suggesting that another protein component is required for the actual translocation of thiamine in the yeast cell membrane. On the other hand, the membrane fraction prepared from S. cerevisiae showed a thiamine-binding activity with apparent Kd of 0.17μM at optimal pH 5.0 which is almost the same with the apparent Km for the thiamine transport system. The membrane-bound thiamine-binding activity was not only repressible by exogenous thiamine in the growth medium, but as well as thiamine transport it was markedly inhibited by both pyrithiamine and O-benzoylthiamine disulfide. In addition, it was found that membrane fraction prepared frtom PT-R2 has the thiamine-binding activity of only 3% of that from the parent strain of S. cerevisiae.These results strongly suggest that membrane-bound thiamine-binding protein may be directly involved in the transport of thiamine in S. cerevisiae.  相似文献   

8.
9.
Hutchings JA 《Heredity》2011,106(3):421-437
Genetic variability in reaction norms reflects differences in the ability of individuals, populations and ultimately species to respond to environmental change. By increasing our understanding of how genotype × environment interactions influence evolution, studies of genetic variation in phenotypic plasticity serve to refine our capacity to predict how populations will respond to natural and anthropogenic environmental variability, including climate change. Given the extraordinary variability in morphology, behaviour and life history in salmonids, one might anticipate the research milieu on reaction norms in these fishes to be empirically rich and intellectually engaging. Here, I undertake a review of genetic variability in continuous and discontinuous (threshold) norms of reaction in salmonid fishes, as determined primarily (but not exclusively) by common-garden experiments. Although in its infancy from a numerical publication perspective, there is taxonomically broad evidence of genetic differentiation in continuous, threshold and bivariate reaction norms among individuals, families and populations (including inter-population hybrids and backcrosses) for traits as divergent as embryonic development, age and size at maturity, and gene expression. There is compelling inferential evidence that plasticity is heritable and that population differences in reaction norms can reflect adaptive responses, by natural selection, to local environments. As a stimulus for future work, a series of 20 research questions are identified that focus on reaction-norm variability, selection, costs and constraints, demographic and conservation consequences, and genetic markers and correlates of phenotypic plasticity.  相似文献   

10.
11.
In the mid-1970s, information technology and recombinant DNA technology were considered as the breakthrough technologies of the final quarter of the 20th century. Now, about 25 years later, information technology has penetrated deeply into our society and nearly everyone uses this technology. Compared to the formidable success of information technology, the progress in the commercialization of recombinant DNA technology is moderate, even when taking into account that all that is related to the technological application of biological sciences needs extensive safety testing. However, there are signs that the speed of this commercialization will increase in the first decade of the 21st century. Moreover, new breakthroughs in our understanding of the complete genetic make up of eukaryotes will contribute to this increase in speed. An important aspect of the commercialization of this technology is the development of cells as factories for the production of valuable and/or useful molecules. Lower eukaryotes, such as yeasts and molds, are the most promising candidates to become the factories of the future, but at present these factories still contains a lot of process lines that may be superfluous under the well controlled conditions in fermentors. On the other hand, the speed and yield of these cellular production lines can be increased by eliminating the rate-determining steps of these process lines. In this contribution to the European Union symposium from Cell to Factory, some steps in the improvement of S. cerevisiae as cell factories for (heterologous) hydrophobic molecules are presented.  相似文献   

12.
Hollunder J  Beyer A  Wilhelm T 《Proteomics》2005,5(8):2082-2089
Protein complexes are major components of cellular organization. Based on large-scale protein complex data, we present the first statistical procedure to find insightful substructures in protein complexes: we identify protein subcomplexes (SCs), i.e., multiprotein assemblies residing in different protein complexes. Four protein complex datasets with different origins and variable reliability are separately analyzed. Our method identifies well-characterized protein assemblies with known functions, thereby confirming the utility of the procedure. In addition, we also identify hitherto unknown functional entities consisting of either functionally unknown proteins or proteins with different functional annotation. We show that SCs represent more reliable protein assemblies than the original complexes. Finally, we demonstrate unique properties of subcomplex proteins that underline the distinct roles of SCs: (i) SCs are functionally and spatially more homogeneous than complete protein complexes (this fact is utilized to predict functional roles and subcellular localizations for so far unannotated proteins); (ii) the abundance of subcomplex proteins is less variable than the abundance of other proteins; (iii) SCs are enriched with essential and synthetic lethal proteins; and (iv) mutations in SC-proteins have higher fitness effects than mutations in other proteins.  相似文献   

13.
A comparison of the structure of (a) proteins from thermophilic and mesophilic microorganisms, (b) closely related proteins with different thermostability from various mesophilic sources, and (c) mutationally altered enzymes with those from wild strains has been carried out. The main molecular mechanisms existing in nature for the creation of thermostable proteins have been elucidated. The most important mechanism is the strengthening of hydrophobic interactions in the interior of the protein globule. This mechanism has been employed to advance a novel approach to enzyme stabilization which consists of the following steps. A protein is first made to unfold into a random coil-like state and then the folding of the protein is performed in one of three ways: (1) in ‘non-native’ conditions, (2) in the presence of substances which can interact with the protein in a noncovalent fashion, (3) after covalent modification of the unfolded protein.  相似文献   

14.
There are many protein ligands and/or drugs described with very different affinity to a large number of target proteins or receptors. In this work, we selected Ligands or Drug-target pairs (DTPs/nDTPs) of drugs with high affinity/non-affinity for different targets. Quantitative Structure-Activity Relationships (QSAR) models become a very useful tool in this context to substantially reduce time and resources consuming experiments. Unfortunately most QSAR models predict activity against only one protein target and/or have not been implemented in the form of public web server freely accessible online to the scientific community. To solve this problem, we developed here a multi-target QSAR (mt-QSAR) classifier using the MARCH-INSIDE technique to calculate structural parameters of drug and target plus one Artificial Neuronal Network (ANN) to seek the model. The best ANN model found is a Multi-Layer Perceptron (MLP) with profile MLP 20:20-15-1:1. This MLP classifies correctly 611 out of 678 DTPs (sensitivity=90.12%) and 3083 out of 3408 nDTPs (specificity=90.46%), corresponding to training accuracy=90.41%. The validation of the model was carried out by means of external predicting series. The model classifies correctly 310 out of 338 DTPs (sensitivity=91.72%) and 1527 out of 1674 nDTP (specificity=91.22%) in validation series, corresponding to total accuracy=91.30% for validation series (predictability). This model favorably compares with other ANN models developed in this work and Machine Learning classifiers published before to address the same problem in different aspects. We implemented the present model at web portal Bio-AIMS in the form of an online server called: Non-Linear MARCH-INSIDE Nested Drug-Bank Exploration & Screening Tool (NL MIND-BEST), which is located at URL: http://miaja.tic.udc.es/Bio-AIMS/NL-MIND-BEST.php. This online tool is based on PHP/HTML/Python and MARCH-INSIDE routines. Finally we illustrated two practical uses of this server with two different experiments. In experiment 1, we report by first time Quantum QSAR study, synthesis, characterization, and experimental assay of antiplasmodial and cytotoxic activities of oxoisoaporphine alkaloids derivatives as well as NL MIND-BEST prediction of potential target proteins. In experiment 2, we report sampling, parasite culture, sample preparation, 2-DE, MALDI-TOF, and -TOF/TOF MS, MASCOT search, MM/MD 3D structure modeling, and NL MIND-BEST prediction for different peptides a new protein of the found in the proteome of the human parasite Giardia lamblia, which is promising for anti-parasite drug-targets discovery.  相似文献   

15.
The BAR proteins are a well-conserved family of proteins including Rvsp in yeast, amphiphysins and Bin proteins in mammals. In yeast, as in mammals, BAR proteins are known to be implicated in vesicular traffic. The Gyp5p (Ypl249p) and Ymr192p proteins interact in two-hybrid tests with both Rvs161p and Rvs167p. Gyp5p is a Ypt/Rab-specific GAP and Ymr192p is highly similar to Gyp5p. To specify the interaction between Rvsp and Gyp5p, we used two-hybrid tests to determine the domains necessary for these interactions. The specific SH3 domain of Rvs167p interacted with the N-terminal domain of Gyp5p. Moreover, Gyp5p could form a homodimer. Fus2 protein is a specific partner of Rvs161p in two-hybrid tests. To characterize the functional relationships between these five proteins, we have studied cellular phenotypes in single, double and triple mutant strains for which rvs mutants present defects, such as polarity, cell fusion and meiosis. Phenotypic analysis showed that Gyp5p, Ymr192p and Fus2p were involved in bipolar budding pattern and in meiosis. Specific epistasis or suppressive phenomena were found between the five mutations. Finally, The Gyp5p-GFP fusion protein was localized at the bud tip during apical growth and at the mother-bud neck during cytokinesis. Moreover, Rvs167p and Rvs161p were shown to be essential for the correct localization of Gyp5p. Altogether, these data support the hypothesis that both Rvsp proteins act in vesicular traffic through physical and functional interactions with Ypt/Rab regulators.  相似文献   

16.
In nature, assembled protein structures offer the most complex functional structures. The understanding of the mechanisms ruling protein–protein interactions opens the door to manipulate protein assemblies in a rational way. Proteins are versatile scaffolds with great potential as tools in nanotechnology and biomedicine because of their chemical, structural, and functional versatility. Currently, bottom-up self-assembly based on biomolecular interactions of small and well-defined components, is an attractive approach to biomolecular engineering and biomaterial design. Specifically, repeat proteins are simplified systems for this purpose.In this work, we provide an overview of fundamental concepts of the design of new protein interfaces. We describe an experimental approach to form higher order architectures by a bottom-up assembly of repeated building blocks. For this purpose, we use designed consensus tetratricopeptide repeat proteins (CTPRs). CTPR arrays contain multiple identical repeats that interact through a single inter-repeat interface to form elongated superhelices. Introducing a novel interface along the CTPR superhelix allows two CTPR molecules to assemble into protein nanotubes. We apply three approaches to form protein nanotubes: electrostatic interactions, hydrophobic interactions, and π-π interactions. We isolate and characterize the stability and shape of the formed dimers and analyze the nanotube formation considering the energy of the interaction and the structure in the three different models. These studies provide insights into the design of novel protein interfaces for the control of the assembly into more complex structures, which will open the door to the rational design of nanostructures and ordered materials for many potential applications in nanotechnology.  相似文献   

17.
《Autophagy》2013,9(9):1300-1311
Inositol phosphates are implicated in the regulation of autophagy; however, the exact role of each inositol phosphate species is unclear. In this study, we systematically analyzed the highly conserved inositol polyphosphate synthesis pathway in S. cerevisiae for its role in regulating autophagy. Using yeast mutants that harbored a deletion in each of the genes within the inositol polyphosphate synthesis pathway, we found that deletion of KCS1, and to a lesser degree IPK2, led to a defect in autophagy. KCS1 encodes an inositol hexakisphosphate/heptakisposphate kinase that synthesizes 5-IP7 and IP8; and IPK2 encodes an inositol polyphosphate multikinase required for synthesis of IP4 and IP5. We characterized the kcs1Δ mutant strain in detail. The kcs1Δ yeast exhibited reduced autophagic flux, which might be caused by both the reduction in autophagosome number and autophagosome size as observed under nitrogen starvation. The autophagy defect in kcs1Δ strain was associated with mislocalization of the phagophore assembly site (PAS) and a defect in Atg18 release from the vacuole membrane under nitrogen deprivation conditions. Interestingly, formation of autophagosome-like vesicles was commonly observed to originate from the plasma membrane in the kcs1Δ strain. Our results indicate that lack of KCS1 interferes with proper localization of the PAS, leads to reduction of autophagosome formation, and causes the formation of autophagosome-like structure in abnormal subcellular locations.  相似文献   

18.
啤酒酵母呼吸缺陷型诱变形成机制初探   总被引:4,自引:0,他引:4  
高东  刘家建 《遗传学报》1989,16(3):219-225
本文以两株不同的啤酒酵母(S.cerevisiae)作出发菌株,用溴化乙锭(10—100μg/ml)作诱变剂,诱变呼吸缺陷型。发现在非生长条件下,EB诱变呼吸缺陷型过程中出现回复现象。这一现象可被咖啡碱有一定程度的抑制,而在生长条件下EB诱变过程中未发现此现象。但当用KCN处理时,则得到了类似于非生长条件下的诱变结果。因而,推测呼吸缺陷型形成过程中可能存在一中间态过程[ρ~-]~*。呼吸缺陷型的形成过程可用ρ~ [ρ~-]~*→ρ~-表示。这是一动态过程。加入一定量的放线菌酮、氯霉素处理时,对诱变动力学曲线没有发现有影响,但培养酵母所用葡萄糖浓度不同时,对其诱变结果有一定的影响。  相似文献   

19.
Casein kinase 2 (CK2) is a ubiquitous, multifunctional eukaryotic serine/threonine kinase that phosphorylates an array of proteins. CK2 is a heterotetramer composed of two catalytic (alpha,alpha(')) and two regulatory (beta) subunits. CK2 plays an essential role in regulatory pathways in cell transformation and proliferation. But the role and function of the individual subunits of CK2, which are not in the holoenzyme, are not yet clear. Northern blot analysis reveals the highest CK2beta activity in mouse testicles and brain. By employing a yeast two-hybrid screen to identify the proteins that interact with CK2beta, we have isolated a cDNA clone encoding a 14-kDa protein with homology to dynein light chains and have designated it as Tctex4. CK2beta interacts specifically with Tctex4 both in a yeast two-hybrid system and in an in vitro interaction assay. Northern blot and in situ hybridization showed that Tctex4 is a novel gene that is expressed in mouse testis.  相似文献   

20.
The analysis of mutants is an indispensable approach towards characterizing gene function. Combining several tools of Drosophila genetics, we designed a new strategy for a mutagenesis screen which is fast, easy-to-apply, and cheap. The combination of a cell-specific Gal4 line with an upstream activating sequence-green fluorescent protein (UAS-GFP) allows the in vivo detection of the cells or tissues of interest without the need for fixation and staining. To further simplify and accelerate the screening procedure, we generated recombinant flies that carry the Gal80 transgene in balancer chromosomes. Gal80 inactivates Gal4; and thus prevents GFP-expression during embryonic and postembryonic development in all individuals carrying the balancer chromosomes. This allows for an easy distinction in vivo between heterozygous and homozygous mutants, the latter being the only ones expressing GFP. Since most of the fly strains and balancer chromosomes can be substituted, this method is suitable for nearly any mutagenesis screen that does not have major restrictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号