首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phylogenetic relationships and systematic position of the digenean genus Ophiosacculus Macy, 1935 has been controversial and opinions of different authors on its systematic position and content are contradictory. Molecular analysis based on the partial sequences of the large subunit ribosomal DNA gene of the type and only valid species of the genus, Ophiosacculus mehelyi (Mödlinger, 1930), as well as previously published sequences of members of several families of Plagiorchiata (including the Allassogonoporidae, Lecithodendriidae and Pleurogenidae as potential relatives of Ophiosacculus) has shown that Ophiosacculus forms a clade with the typical representatives of the Lecithodendriidae from bats. Ophiosacculus is basal to the cluster containing Lecithodendrium, Prosthodendrium and Pycnoporus and has quite pronounced differences in the sequenced fragment compared to these genera. Based on the results of the molecular study, morphological characteristics of Ophiosacculus (in particular, possession of a seminal vesicle lying freely in parenchyma) and the fact that the type-specimen of Gyrabascus brevigastrus Macy, 1835 (type-species of the monotypic genus Gyrabascus and type-genus of the subfamily Gyrabascinae) belongs to Allassogonoporus, a new subfamily, the Ophiosacculinae, with Ophiosacculus as the type-genus, is established within the Lecithodendriidae. Molecular study did not support a close phylogenetic relationship between Allassogonoporus and Ophiosacculus, although several authors previously allocated both these genera to the Allassogonoporidae. Morphological study revealed the position of the genital pore in O. mehelyi to be at the posterior margin of the ventral sucker. An amended diagnosis of Ophiosacculus and a diagnosis of Ophiosacculinae n. subfam. are given.  相似文献   

2.
The phylogenetic relationships among characids are complex with many genera remaining of uncertain systematic position inside the family. The genus Hollandichthys is one of these problematic genera. It has been considered as incertae sedis inside this family until two recently published phylogenies, one morphological and one molecular, arrived at alternative hypothesizes as to the relationships of Hollandichthys with Pseudochalceus or Rachoviscus, respectively. In this paper, we infer the phylogenetic relations of these taxa based on five genes (three mitochondrial - COI, ND2 and 16S; and two nuclear - Sia and Trop), totaling up to 2719 bp. The 41 analyzed species in the Characidae include four incertae sedis characid taxa once hypothesized as related to Hollandichthys, but never analyzed in a single phylogeny (Rachoviscus, Pseudochalceus, Nematocharax and Hyphessobrycon uruguayensis). Here we propose Rachoviscus as the sister-group of Hollandichthys, grouped in the large clade C previously defined, along with the remaining incertae sedis taxa studied here. In addition, we support the evidence that insemination evolved independently at least three times in the Characidae.  相似文献   

3.
Chen S  Xia T  Wang Y  Liu J  Chen S 《Annals of botany》2005,96(3):413-424
BACKGROUND AND AIMS: The systematic position of the genus Metagentiana and its phylogenetic relationships with Crawfurdia, Gentiana and Tripterospermum have not been explicitly addressed. These four genera belong to one of two subtribes (Gentianinae) of Gentianeae. The aim of this paper is to examine the systematic position of Crawfurdia, Metagentiana and Tripterospermum and to clarify their phylogenetic affinities more clearly using ITS and trnL intron sequences. METHODS: Nucleotide sequences from the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the plastid DNA trnL (UAA) intron were analysed phylogenetically. Ten of fourteen Metagentiana species were sampled, together with 40 species of other genera in the subtribe Gentianinae. KEY RESULTS: The data support several previously published conclusions relating to the separation of Metagentiana from Gentiana and its closer relationships to Crawfurdia and Tripterospermum based on studies of gross morphology, floral anatomy, chromosomes, palynology, embryology and previous molecular data. The molecular clock hypothesis for the tested sequences in subtribe Gentianinae was not supported by the data (P < 0.05), so the clock-independent non-parametric rate smoothing method was used to estimate divergence time. This indicates that the separation of Crawfurdia, Metagentiana and Tripterospermum from Gentiana occurred about 11.4-21.4 Mya (million years ago), and the current species of these three genera diverged at times ranging from 0.4 to 6.2 Mya. CONCLUSIONS: The molecular analyses revealed that Crawfurdia, Metagentiana and Tripterospermum do not merit status as three separate genera, because sampled species of Crawfurdia and Tripterospermum are embedded within Metagentiana. The speciation and rapid radiation of these three genera is likely to have occurred in western China as a result of upthrust of the Himalayas during the late Miocene and the Pleistocene.  相似文献   

4.
Forty-five sequences from members of all genera of Asteraceae indigenous to New Zealand and 50 published sequences representing the tribal diversity in the family were analyzed to assess the utility of ITS sequences to resolve phylogenetic relationships. Previous studies using chloroplast DNA sequences and morphology provided support for several clades in the Asteraceae, yet the relationships among some of these were uncertain. The results from ITS analysis were largely consistent with these earlier studies. The New Zealand species are included in at least six clades, most of these corresponding to recognized tribes. Our results have also clarified the tribal affinities of a few anomalous genera. Haastia, previously aligned with the Gnaphalieae or the Astereae, is nested in the Senecioneae. Centipeda, previously included in the Astereae or Anthemideae, emerges near the Heliantheae. The relationships of Abrotanella remain unresolved. Received August 8, 2001 Accepted November 6, 2001  相似文献   

5.
The taxonomic framework of the Haploporidae is evaluated and the relationships within the Haploporinae are assessed for the first time at the generic level using molecular data. Partial 28S and complete ITS2 rDNA sequences from representatives of six of the nine recognised genera within the Haploporinae were analysed together with published sequences representing members of two haploporid subfamilies and of the closely related family Atractotrematidae. Molecular analyses revealed: (i) a close relationship between the Atractotrematidae and the Haploporidae; (ii) strong support for the monophyly of the Haploporinae, Dicrogaster and Saccocoelium, and the position of Ragaia within the Haploporinae; (iii) evidence for rejection of the synonymy of Saccocoelioides and Lecithobotrys and the validity of the Dicrogasterinae; and (iv) support for the distinct status of Saccocoelium in relation to Haploporus. The wider sampling within the genera Dicrogaster and Saccocoelium confirmed the distinct status of the included species, thus rejecting previously suggested synonymies. Saccocoelioides, recently transferred to the Chalcinotrematinae, was nested within the Haploporinae and this was largely associated with the position of Forticulcita, resolved as the most basal haploporine genus. Forticulcita also possesses a well-delimited eversible intromittent copulatory organ, a feature unique in the Haploporidae which has not been previously considered an important apomorphy. This, in association with the present hypothesis of the Haploporinae based on molecular data, led us to erect Forticulcitinae subf. n. for Forticulcita; this resolved Saccocoelioides and, by extension the Chalcinotrematinae, as sister groups to the Haploporinae.  相似文献   

6.
To explore phylogenetic relationships among glyptosternoid fishes, we determined nucleotide sequences of the complete mitochondrial cytochrome b gene region (1138 base pair). Thirteen species of glyptosternoid fishes and six species of non-glyptosternoids represent 10 sisorid genera were examined. Molecular phylogenetic trees were constructed using the maximum parsimony, minimum evolution, maximum likelihood, and Bayesian methods. Bayesian and maximum likelihood analyses support the monophyly of glyptosternoids, but our hypothesis of internal relationships differs from previous hypothesis. Results indicated that glyptosternoid is a monophyletic group and genera Glyptosternum and Exostoma are two basal species having a primitive position among it. Genera Euchiloglanis and Pareuchiloglanis form a sister-group. Then they form a sister-group with Pseudexostoma plus Oreoglanis. Our result also found that Pareuchiloglanis anteanalis might be considered as the synonyms of Parechiloglanis sinensis, and genus Euchiloglanis might have only one valid species, Euchiloglanis davidi.  相似文献   

7.
8.
The phylogenetic positions of 22 isolates that morphologically resemble members of the family Planctomycetaceae were determined by sequence analysis of genes coding for 16S rRNA. While nine and eight isolates could be assigned to the genera Planctomyces and Pirellula, respectively, three strains grouped near Isosphaera pallida and one strain was closely related to Gemmata obscuriglobus. No isolate was found to be related to a previously described species of any of the four genera at the species level. Morphological characters and sequence idiosyncrasies of genes coding for 16S rRNA of the isolates generally correlated with features described for the four genera to which the isolates could be assigned. One strain stands phylogenetically isolated and may be representative of a novel genus of the family. Comparison with environmental clone sequences representing planctomycetes in soil and water revealed that three of the novel isolates were related to one clone of soil origin, but no close relationships between clones and the other new strains were found. The study reveals that the biodiversity of planctomycetes is significantly greater than was previously determined.  相似文献   

9.
Molecular phylogenetic relationships among 45 members of the Helicoidea (Gastropoda: Stylommatophora) were examined using partial mitochondrial 16S rRNA sequences. Phylogenetic relationships were inferred using maximum parsimony, maximum likelihood and Bayesian methods. The reconstructed phylogenies showed a good degree of support for more recent branches, but gave little support to deeper nodes. Mitochondrial rDNA data further confirmed monophyletic status of helicids, recognized monachine hygromiid and bradybaenid clades and resolved a number of relationships in the helicelline hygromiids. With the respect to the latter assemblage, most of the anatomically based groups are confirmed, corroborating the diagnostic value of the dart-sac complex and a close affinity between Ichnusomunda sacchii and species of the genus Cernuella . Nevertheless, some well resolved branches challenge previous systematic arrangements, grouping species previously placed in different arrangements. In particular, support was not found for the monophyly of helicelline hygromiids with pedal penial innervation. Possible explanations for these incongruencies are suggested. 16S sequence data are appropriate for studies of relationships within the different species groups and less so for recovery of more ancient radiations in the Helicoidea. It will be valuable to combine the 16S data with other gene sequences to estimate basal relationships.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 501–512.  相似文献   

10.
We investigated the phylogenetic relationships of carrion beetles (Coleoptera, Silphidae) using 2094 bp of their mitochondrial cytochrome oxidase subunit I and II and tRNA leucine gene sequences. Shorter fragments of this gene region previously have been used to establish generic relationships in insects. In this study, they provided more than sufficient resolution, although the third positions of the protein-coding sequences reached saturation for the deeper divergences. This first published phylogeny for the Silphidae comprises 23 species from 13 genera sampled across the geographic range of the family. In addition, we included species from three related families as outgroups. One of these families, the Agyrtidae, was, until recently, included in the Silphidae, but its resolution here justifies its current position as a separate family. The silphid subfamilies Nicrophorinae and Silphinae are monophyletic in all analyses. All genera for which several species were sampled are supported as monophyletic groups, with the exception of the genus Silpha. European and North American representatives of two Nicrophorus species described from both continents are supported as each others' closest relatives. The lineage that colonized Gondwanaland and that most likely originated in the Palearctic is the most basal within the Silphinae.  相似文献   

11.
Vellinga EC  de Kok RP  Bruns TD 《Mycologia》2003,95(3):442-456
The position and composition of Macrolepiota within the Agaricaceae and its phylogenetic relationships with other members of the family were investigated, using both molecular (ITS and LSU rDNA sequences) and morphological characters. The molecular data separate the genus into two clades. The first clade comprises M. procera, M. mastoidea, M. clelandii and allies and is a sister group of Leucoagaricus and Leucocoprinus. The second, more diverse, clade, with M. rachodes and allies, M. globosa, Chlorophyllum molybdites, Leucoagaricus hortensis and Endoptychum agaricoides, is a sister group of Agaricus. The separation of the two clades is supported by morphological characters, such as the structure of the pileus covering, the stipitipellis and the shape of the germ pore and the spore apex. The two clades are regarded as genera for which the names Macrolepiota and Chlorophyllum are proposed. Macrolepiota nympharum does not belong to either clade but is assigned to the genus Leucoagaricus, close to L. leucothites. Endoptychum depressum is transferred to the genus Agaricus as A. inapertus.  相似文献   

12.
Thum  Ryan A. 《Hydrobiologia》2004,519(1-3):135-141
The phylogenetic relationships among the numerous genera of diaptomid copepods remain elusive due to difficulties in obtaining sufficient numbers of phylogenetically informative morphological characters for cladistic analysis. Molecular phylogenetic techniques offer high potential to resolve phylogenetic relationships in the absence of sufficient morphological characters because of the ease in which many characters can be unambiguously coded. I present the first molecular phylogeny for diaptomid copepod genera using 18S rDNA. Specifically, I test Light’s (1939) hypothesis regarding the interrelationships among the North American diaptomid genera. The 18S phylogeny is remarkably consistent with Light’s hypothesis. The endemic North American genera represent a monophyletic group exclusive of the non-endemic genera. Moreover, his hypothesized basal genus for the North America genera, Hesperodiaptomus, is the basal genus in this analysis. However, his Leptodiaptomus group is not reciprocally monophyletic with his Hesperodiaptomus group, but is rather a derived member of the latter group. Finally, the genus Mastigodiaptomus is found to be more closely allied with the non-endemic genera, as Light suggested. This phylogeny contributes heavily to the understanding of phylogenetic relationships among North American diaptomids and has large implications for the systematics of diaptomids in general. The use of 18S rDNA sequences in phylogenetic analyses of diaptomid copepods can be used to confirm the monophyly of recognized genera, the interrelationships among genera, and subsequent biogeographic interpretation of the family’s diversification. The use of molecular data, such as 18S rDNA sequences, to test phylogenetic hypotheses based on a very limited number of morphological characters will be a particularly useful approach to phylogenetic analysis in this system.  相似文献   

13.
In this study we used nucleotide sequences from a segment of mitochondrial 16S ribosomal DNA gene to investigate the evolutionary relationships of some French Guiana Hylinae. New sequences, representing the members of different French Guiana frogs-five specimens of the Scinax genus, two Hyla, one Osteocephalus, one Hyalinobatrachium and two Rana as out-group-were examined. In addition, 26 sequences available from GenBank database representing the other subfamilies of the Hylidae were added to our study. This work allowed us to clarify relationships within the four hylids subfamilies (Pelodryadinae, Phyllomedusinae, Hemiphractinae and Hylinae) and the phylogenetic placement of the enigmatic Scinax genus within the Hylidae. We found that: (1) the Scinax genus displays a high level of differentiation in comparison to two other genera (Litoria and Hyla) belonging to 'Hylidae' family; (2) the Hylinae are paraphyletic given the position of the Litoria, which was the sister-group of the Hyla and the Osteocephalus genera; (3) the anterior works and our results (based on two different data sets) showed the paraphyly of the Hylidae questioning the validity of this family; (4) the reassessment of these different taxonomic groups will induce a huge implication on the estimation (past, present and future) of the biodiversity (in Neotropical frogs).  相似文献   

14.
Python phylogenetics: inference from morphology and mitochondrial DNA   总被引:1,自引:0,他引:1  
We used nucleotide sequences from four mitochondrial genes and structural features of the mitochondrial control region, combined with a revised, previously published, morphological data set to infer phylogenetic relationships among the pythons. We aimed to determine which of two competing hypotheses of relationships of the genera Aspidites and Python best explains the evolutionary and bioegeographical history of the family. All analyses of the combined data recover a set of relationships in which (1) the genus Python is paraphyletic with the two east Asian species, P. reticulatus and P. timoriensis , as the sister lineage to the seven Australo-Papuan python genera. We support recognition of a distinct genus for the P. reticulatus  +  P. timoriensis clade; (2) the remaining species of the genus Python form a clade which is the sister lineage to the remainder of the family; (3) the genus Aspidites is embedded among the Australo-Papuan genera. The seemingly primitive characteristics of Aspidites may be better interpreted as reversals or specializations that have accompanied a switch to burrowing in this genus. Resolution of the relationships among the Australo-Papuan lineages is weak, possibly because of rapid diversification early in the history of the radiation. We assessed the tempo of the Indo-Australian python radiation using a maximum likelihood framework based on the birth–death process. We find strong support for elevated speciation rates during the period when Australia collided with the proto-Indonesian archipelago. The data support an origin for pythons outside Australia, followed by a radiation into Australia during the mid-Tertiary.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 603–619.  相似文献   

15.
The first formal analysis of phylogenetic relationships among small-headed flies (Acroceridae) is presented based on DNA sequence data from two ribosomal (16S and 28S) and two protein-encoding genes: carbomoylphosphate synthase (CPS) domain of CAD (i.e., rudimentary locus) and cytochrome oxidase I (COI). DNA sequences from 40 species in 22 genera of Acroceridae (representing all three subfamilies) were compared with outgroup exemplars from Nemestrinidae, Stratiomyidae, Tabanidae, and Xylophagidae. Parsimony and Bayesian simultaneous analyses of the full data set recover a well-resolved and strongly supported hypothesis of phylogenetic relationships for major lineages within the family. Molecular evidence supports the monophyly of traditionally recognised subfamilies Philopotinae and Panopinae, but Acrocerinae are polyphyletic. Panopinae, sometimes considered "primitive" based on morphology and host-use, are always placed in a more derived position in the current study. Furthermore, these data support emerging morphological evidence that the type genus Acrocera Meigen, and its sister genus Sphaerops, are atypical acrocerids, comprising a sister lineage to all other Acroceridae. Based on the phylogeny generated in the simultaneous analysis, historical divergence times were estimated using Bayesian methodology constrained with fossil data. These estimates indicate Acroceridae likely evolved during the late Triassic but did not diversify greatly until the Cretaceous.  相似文献   

16.
The systematic position of the aberrant primulaceous genus Coris was investigated by means of cladistic analysis of nucleotide sequence data from the chloroplast gene rbcL . One new sequence ( Coris ) was added to a data matrix composed of a set of previously published sequences. The notion that Coris is most closely related to the Lythraceae is rejected, and very strong support for its position within the Primulaceae was found. The clariñcation of this issue is important for future analyses of phylogenetic interrelationships in the Primulales.  相似文献   

17.
The development of new schemes for weighting DNA sequence data for phylogenetic analysis continues to outpace the development of consensus on the most appropriate weights. The present study is an exploration of the similarities and differences between results from 22 character weighting schemes when applied to a study of barbet and toucan (traditional avian families Capitonidae and Ramphastidae) phylogenetic relationships. The dataset comprises cytochrome b sequences for representatives of all toucan and Neotropical barbet genera, as well as for several genera of Paleotropical barbets. The 22 weighting schemes produced conflicting patterns of relationship among taxa, often with conflicting patterns each receiving strong bootstrap support. Use of multiple weighting schemes helped to identify the source within the dataset (codon position, transitions, transversions) of the various putative phylogenetic signals. Importantly, some phylogenetic hypotheses were consistently supported despite the wide range of weights employed. The use of phylogenetic frameworks to summarize the results of these multiple analyses proved very informative. Relationships among barbets and toucans inferred from these data support the paraphyly of the traditional Capitonidae. Additionally, these data support paraphyly of Neotropical barbets, but rather than indicating a relationship between Semnornis and toucans, as previously suggested by morphological data, most analyses indicate a basal position of Semnornis within the Neotropical radiation. The cytochrome b data also allow inference of relationships among toucans. Supported hypotheses include Ramphastos as the sister to all other toucans, a close relationship of Baillonius and Pteroglossus with these two genera as the sister group to an (Andigena, Selenidera) clade, and the latter four genera as a sister group to Aulacorhynchus.  相似文献   

18.
Gliridae is a small family of rodents including three subfamilies: the Eurasian Glirinae (with three genera) and Leithiinae (with four genera) and the African Graphiurinae (with a single genus). Phylogenetic relationships among these eight genera are not fully resolved based on morphological characters. Moreover, the genus Graphiurus is characterized by numerous peculiar features (morphological characters and geographical distribution), raising the question of its relationships to the family Gliridae. The phylogenetic position of Graphiurus and the intra-Gliridae relationships are here addressed by a molecular analysis of 12S RNA and cytochrome b mitochondrial gene sequences for six glirid genera. Phylogenetic analyses are performed with three construction methods (neighbor-joining, maximum parsimony and maximum likelihood) and tests of alternative topologies with respect to the most likely. Our analyses reveal that Graphiurus is clearly a member of the Gliridae, refuting the hypothesis that the family could be paraphyletic. Among Gliridae, phylogenetic relationships are poorly resolved: the Leithiinae could be monophyletic, there is no support for the subfamily Glirinae, and the closest relative of Graphiurus is not identified. The inclusion of Graphiurus among Gliridae allows us to postulate that its hystricomorphous condition has been achieved convergently with other hystricomorphous rodents.  相似文献   

19.
Ophyra Robineau‐Desvoidy is one of the better‐studied genera of the family Muscidae (Diptera). The larvae of species of this genus feed on highly decomposed organic matter of various origins, and may reveal predatory behaviour as they mature. These feeding habits, combined with the widespread distribution and close association with human dwellings of some species, give the genus commercial and medico‐legal importance. However, the systematic position of Ophyra has been a matter of debate for many years. Ophyra has been considered by muscid workers to be either a valid genus or a junior synonym of Hydrotaea Robineau‐Desvoidy. A lack of agreement about the systematic position of Ophyra has led to serious errors, particularly in the applied literature. Recent molecular and morphological studies provided contradictory information on the validity of the genus and its subfamilial classification. We revise the systematic position of Ophyra herein by means of molecular phylogenetic reconstruction. Our results are incongruent with opinions on the systematic position of Ophyra based on previously published molecular phylogenies, although they correspond with the concept of the genus based on adult morphology. All analyses of the concatenated dataset revealed Ophyra as monophyletic and placed within a paraphyletic Azeliini. Depending on the phylogenetic approach, Ophyra was placed within either a monophyletic, paraphyletic or polyphyletic Hydrotaea, yet always closely related to a certain group of species. We conclude that Ophyra, as currently defined, should not be considered a valid name, yet a detailed reconstruction of the genus Hydrotaea awaits future studies with greater increases in both taxon sampling and the number of molecular markers.  相似文献   

20.
In this study, we successfully assembled the complete mitochondrial genome of the Amu Darya sturgeon Pseudoscaphirhynchus kaufmanni. Based on this mitochondrial genome and previously published mitochondrial genomes of members of the Acipenseridae family, we assessed the phylogenetic position of P. kaufmanni using maximum likelihood and Bayesian inference for phylogeny reconstruction. The resultant phylogenetic trees were well-resolved, with congruence between different phylogenetic methods. This robust phylogenetic analysis elucidated the relationship among the four acipenserid genera and strongly supported the division of the family into three main clades. Evaluation of molecular phylogeny using maximum likelihood and Bayesian analysis led to the following conclusions: (a) the most basal position within the Acipenseridae remains in the clade containing Acipenser oxyrinchus and Acipenser sturio; (b) the genus Scaphirhynchus belongs to the Atlantic clade and is a sister group of the remaining species of the clade; and (c) the close relationship between P. kaufmanni and Acipenser stellatus is well supported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号