首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microviscosity of human erythrocytes studied with hypophosphite and 31P-NMR   总被引:1,自引:0,他引:1  
A 31P-NMR method, which complements earlier 13C-NMR procedures for probing the intra-erythrocyte microenvironment, is described. Hypophosphite is an almost unique probe of the erythrocyte microenvironment, since it is rapidly transported into the cell via the band 3 protein, and intra- and extracellular populations give rise to distinct resonances in the 31P-NMR spectrum. Relaxation mechanisms of the 31P nucleus in the hypophosphite ion were shown to be spin-rotation and dipole-dipole. Analysis of longitudinal relaxation rates in human erythrocytes, haemolysates and concentrated glycerol solutions allowed the determination of microviscosity using the Debye equation. Bulk viscosities of lysates and glycerol solutions were measured using Ostwald capillary viscometry. Translational diffusion coefficients were then calculated from the viscosity estimates using the Stokes-Einstein equation. The results with a range of solvent systems showed that 'viscosity' is a relative phenomenon and that bulk (i.e., macro-) viscosity is therefore not necessarily related to the NMR-determined viscosity. The intracellular NMR-determined viscosities from red cells, ranging in volume from 65.5 to 100.1 fl, varied from 2.10 to 2.67 mPa s. This is consistent with the translational diffusion coefficients of the hypophosphite ion altering by only 20%, whereas the values determined from bulk viscosity measurements conducted on lysates of these cells are consistent with a 230% change.  相似文献   

2.
Hypophosphorus acid has a single pKa of 1.1 and at physiological pH values it is therefore present almost entirely as the univalent hypophosphite ion. When added to a red cell suspension the ion crosses the cell membrane rapidly, via the anion exchange protein, and the intra- and extracellular populations of the ion give rise to separate 31P NMR resonances. From a single 31P NMR spectrum it was possible to determine the relative amounts of hypophosphite in the intra- and extracellular compartments and thereby estimate the corresponding concentrations. The ratio of intracellular to extracellular hypophosphite concentration was independent of the total hypophosphite concentration for cells suspended in NaCl solutions and was independent of hematocrit. The hypophosphite distribution ratio increased as extracellular NaCl was replaced iso-osmotically with citrate or sucrose, through it remained very similar to the corresponding hydrogen ion distribution ratio. Incorporation of the hypophosphite distribution ratio into the Nernst equation yielded an estimate of the membrane potential. For cells suspended in NaCl solutions the estimated potential was consistently around -10 mV.  相似文献   

3.
Water proton spin-lattice relaxation is studied in dilute solutions of bovine serum albumin as a function of magnetic field strength, oxygen concentration, and solvent deuteration. In contrast to previous studies conducted at high protein concentrations, the observed relaxation dispersion is accurately Lorentzian with an effective correlation time of 41 +/- 3 ns when measured at low proton and low protein concentrations to minimize protein aggregation. Elimination of oxygen flattens the relaxation dispersion profile above the rotational inflection frequency, nearly eliminating the high field tail previously attributed to a distribution of exchange times for either whole water molecules or individual protons at the protein-water interface. The small high-field dispersion that remains is attributed to motion of the bound water molecules on the protein or to internal protein motions on a time scale of order one ns. Measurements as a function of isotope composition permit separation of intramolecular and intermolecular relaxation contributions. The magnitude of the intramolecular proton-proton relaxation rate constant is interpreted in terms of 25 +/- 4 water molecules that are bound rigidly to the protein for a time long compared with the rotational correlation time of 42 ns. This number of bound water molecules neglects the possibility of local motions of the water in the binding site; inclusion of these effects may increase the number of bound water molecules by 50%.  相似文献   

4.
5.
The magnetic relaxation dispersion profiles for formate, acetate, and water protons are reported for aqueous solutions of hemoglobin singly and doubly labeled with a nitroxide and mercury(II) ion at cysteines at beta-93. Using two spin labels, one nuclear and one electron spin, a long intramolecular vector is defined between the two beta-93 positions in the protein. The paramagnetic contributions to the observed 1H spin-lattice relaxation rate constant are isolated from the magnetic relaxation dispersion profiles obtained on a dual-magnet apparatus that provides spectral density functions characterizing fluctuations sensed by intermoment dipolar interactions in the time range from the tens of microseconds to approximately 1 ps. Both formate and acetate ions are found to bind specifically within 5 angstroms of the beta-93 spin-label position and the relaxation dispersion has inflection points corresponding to correlation times of 30 ps and 4 ns for both ions. The 4-ns motion is identified with exchange of the anions from the site, whereas the 30-ps correlation time is identified with relative motions of the spin label and the bound anion in the protein environment close to beta-93. The magnetic field dependence of the paramagnetic contributions in both cases is well described by a simple Lorentzian spectral density function; no peaks in the spectral density function are observed. Therefore, the high frequency motions of the protein monitored by the intramolecular vector defined by the electron and nuclear spin are well characterized by a stationary random function of time. Attempts to examine long vector fluctuations by employing electron spin and nuclear spin double-labeling techniques did not yield unambiguous characterization of the high frequency motions of the vector between beta-93 positions on different chains.  相似文献   

6.
The water-proton spin-lattice relaxation rate constant, 1/T(1), was measured as a function of magnetic field strength for several dilute protein solutions. By separating the intermolecular contributions from the intramolecular contributions to the water-proton spin-lattice relaxation, the number of water molecules that bind to the protein for a time long compared with the rotational correlation time may be measured. We find a good correlation between the number of long-lived water molecules and the predictions based on available free volume in the proteins studied. The rotational correlation times of these proteins are larger than predicted by the Stokes-Einstein-Debye (SED) model for a sphere reorienting in a viscous liquid. The discrepancy between experiment and theory is usually attributed to hydration effects increasing the effective radius of the particle. However, the average lifetime of water molecules at the protein interface is far too short to justify such a picture. We suggest that surface roughness may be responsible for the retardation of rotational mobility and find that the SED model provides a reasonable representation of experiment if the radius assumed for the reorienting particle is the arithmetic mean of the crystallographic packing radius and the radius deduced from the effective surface area of the protein.  相似文献   

7.
Spin-spin relaxation time (T2), spin-lattice relaxation time (T1), and spin-lattice relaxation time in the rotating frame (T1p) of water protons in solutions of bacteriophage T2 were studied by pulsed nuclear magnetic resonance. The frequency dependence of the measurements exhibits a dispersion implying existence of a fraction of water molecules in solution with a correlation time distribution centered at approximately 10(-5) sec which is strongly influenced by the reorientational motions of virus particles. Experiments were carried out with two forms of bacteriophage T2 existing at pH 5.4 and 7.8 respectively. The different structures of the virus at these two pH values are reflected in the NMR relaxation behavior of water protons.  相似文献   

8.
The rotational diffusion behavior of phosphorus metabolites present in calf lens cortical and nuclear homogenates was investigated by the NMR technique of 31P off-resonance rotating frame spin-lattice relaxation as a means of assessing the occurrence and extent of phosphorus metabolite-lens protein interactions. 31P NMR spectra of calf lens homogenates were obtained at 10 and 18 degrees C (below and above the cold cataract phase transition temperature, respectively) at 7.05 T. Effective rotational correlation times (tau 0,eff) for the major phosphorus metabolites present in cortical and nuclear bovine calf lens homogenates were derived from nonlinear least-squares analysis of R vs omega e (spectral intensity ratio vs precessional frequency about the effective field) data with the assumption of isotropic reorientational motion. Intramolecular dipole-dipole (1H-31P, 31P-31P), chemical shift anisotropy (CSA), and solvent (water) translational intermolecular dipole-dipole (1H-31P) relaxation contributions were assumed in the analyses. In those cases where the limiting value of the spectral intensity ratio failed to reach unity at large offset frequency, a modified formalism incorporating chemical exchange mediated saturation transfer between two sites was used. Values of tau 0,eff for phosphorus metabolites present in the cortex varied from a low of ca. 2 ns [L-alpha-glycero-phosphocholine (GPC)] to a high of 12 ns (alpha-ATP) at 10 degrees C, whereas at 18 degrees C the range was from ca. 1 to 9 ns. For the nucleus the tau 0,eff values ranged from ca. 3 ns (GPC) to 41 ns (Pi) at 10 degrees C; at 18 degrees C the corresponding values ranged from 4 to 39 ns. For PME (phosphomonoester; in lens the predominant metabolite is L-alpha-glycerol phosphate) at 18 degrees C evidence was obtained for binding and subsequent exchange with solid like protein domains. The diversity in tau 0,eff values for lenticular phosphorus metabolites is suggestive of differential binding to more slowly tumbling macromolecular species, most likely lens crystallin proteins. Corresponding measurement of tau 0,eff values for the mobile protein fraction present in calf lens cortical and nuclear homogenates at 10 and 18 degrees C, by 13C off-resonance rotating frame spin-lattice relaxation, provided average macromolecular correlation times that were assumed to represent the bound metabolite state. A fast-exchange model (on the T1 time scale), between free and bound forms, was employed in the analysis of the metabolite R vs omega e curves to yield the  相似文献   

9.
The dominant dynamics of a partially folded A-state analogue of ubiquitin that give rise to NMR 15N spin relaxation have been investigated using molecular dynamics (MD) computer simulations and reorientational quasiharmonic analysis. Starting from the X-ray structure of native ubiquitin with a protonation state corresponding to a low pH, the A-state analogue was generated by a MD simulation of a total length of 33 ns in a 60%/40% methanol/water mixture using a variable temperature scheme to control and speed up the structural transformation. The N-terminal half of the A-state analogue consists of loosely coupled native-like secondary structural elements, while the C-terminal half is mostly irregular in structure. Analysis of dipolar N-H backbone correlation functions reveals reorientational amplitudes and time-scale distributions that are comparable to those observed experimentally. Thus, the trajectory provides a realistic picture of a partially folded protein that can be used for gaining a better understanding of the various types of reorientational motions that are manifested in spin-relaxation parameters of partially folded systems. For this purpose, a reorientational quasiharmonic reorientational analysis was performed on the final 5 ns of the trajectory of the A-state analogue, and for comparison on a 5 ns trajectory of native ubiquitin. The largest amplitude reorientational modes show a markedly distinct behavior for the two states. While for native ubiquitin, such motions have a more local character involving loops and the C-terminal end of the polypeptide chain, the A-state analogue shows highly collective motions in the nanosecond time-scale range corresponding to larger-scale movements between different segments. Changes in reorientational backbone entropy between the A-state analogue and the native state of ubiquitin, which were computed from the reorientational quasiharmonic analyses, are found to depend significantly on motional correlation effects.  相似文献   

10.
H. Hanssum  H. Rüterjans 《Biopolymers》1980,19(9):1571-1585
13C spin-lattice relaxation times of poly(L -lysine) have been obtained at 67.9 MHz in aqueous solution and in a mixed solvent (40% methanol/60% water). A concomitant determination of the conformation by CD permits the correlation of conformation and rotational diffusion of the polymer. The dependence on pH of the spin-lattice relaxation times of the 13Cα and the side-chain carbon resonances reflects the diffusional motion in the random-coil conformation, in the helix–coil transition, and in the conformation of the α-helix. In the mixed solvent the reorientational correlation time of the Cα-Hα vector increases from τ = 0.37 nsec (random coil) to τ = 12.0 nsec (α-helix). In aqueous solution the correlation time of this vector increases from τ = 0.33 nsec (random coil) to τ ? 11 nsec. The reorientation rates of the side-chain methylene groups in the two solvents are markedly different. The reorientation of all methylene groups is reduced in the mixed solvent.  相似文献   

11.
A new model for the prediction of protein backbone motions is presented. The model, termed reorientational contact-weighted elastic network model, is based on a multidimensional reorientational harmonic potential of the backbone amide bond vector orientations and it is applied to the interpretation of dynamics parameters obtained from NMR relaxation data. The individual energy terms are weighted as a function of the intervector distances and by the contact strengths of each bond vector with respect to its local environment. Correlated reorientational motional properties of the bond vectors are obtained by means of normal mode analysis. Application to a set of proteins with known three-dimensional structures yields good to excellent agreement between predicted and experimental NMR order parameters presenting an improvement over the local contact model. The reorientational eigenmodes of the reorientational contact-weighted elastic network model method provide direct information on the collective nature of protein backbone motions. The dominant eigenmodes have a notably low collectivity, which is consistent with the behavior found for reorientational eigenmodes from molecular dynamics simulations.  相似文献   

12.
The diphtheria toxin repressor contains an SH3-like domain that forms an intramolecular complex with a proline-rich (Pr) peptide segment and stabilizes the inactive state of the repressor. Upon activation of diphtheria toxin repressor (DtxR) by transition metals, this intramolecular complex must dissociate as the SH3 domain and Pr segment form different interactions in the active repressor. Here we investigate the dynamics of this intramolecular complex using backbone amide nuclear spin relaxation rates determined using NMR spectroscopy and molecular dynamics trajectories. The SH3 domain in the unbound and bound states showed typical dynamics in that the secondary structures were fairly ordered with high generalized order parameters and low effective correlation times, while residues in the loops connecting β-strands exhibited reduced generalized order parameters and required additional motional terms to adequately model the relaxation rates. Residues forming the Pr segment exhibited low-order parameters with internal rotational correlation times on the order of 0.6 ns-1 ns. Further analysis showed that the SH3 domain was rich in millisecond time scale motions while the Pr segment exhibited motions on the 100 μs time scale. Molecular dynamics simulations indicated structural rearrangements that may contribute to the observed relaxation rates and, together with the observed relaxation rate data, suggested that the Pr segment exhibits a binding ↔ unbinding equilibrium. The results here provide new insights into the nature of the intramolecular complex and provide a better understanding of the biological role of the SH3 domain in regulating DtxR activity.  相似文献   

13.
Potentialities and limitations of the use of (1)H NMRD technique for the characterization of the hydration properties of unfolded or partially folded states of proteins are discussed. The copper(I) form of monomeric Cu,Zn superoxide dismutase in its folded state and in the presence of 4M guanidinium chloride is taken as case system. The dispersion profile, analyzed with an extended relaxation matrix analysis, indicates the presence of long-lived water molecules in the folded state. The observed increase in relaxation at high field upon addition of guanidinium chloride indicates an increase in the number of solvation protons interacting with the protein and exchanging with a time shorter than the protein reorientational time. The observed effect is consistent with an exposed protein surface of SOD in the presence of 4M guanidinium chloride smaller than what could be expected for a random coil.  相似文献   

14.
The 13C off-resonance rotating frame spin-lattice relaxation technique is applicable to the study of protein rotational diffusion behavior in a variety of experimental situations. The original formalism of James and co-workers (1978) (J. Amer. Chem. Soc. 100, 3590-3594) was constrained by the assumption of random isotropic reorientational motion. Here we include in the formalism anisotropic tumbling, and present the results of computer simulations illustrating the differences between anisotropic and isotropic reorientational motion for the off-resonance rotating frame spin-lattice relaxation experiment. In addition, we have included chemical shift anisotropy of the peptide carbonyl carbon as an additional relaxation mechanism contribution, to permit high-field nmr protein rotational diffusion measurements.  相似文献   

15.
X Peng  J Jonas 《Biochemistry》1992,31(28):6383-6390
High-pressure 31P NMR was used for the first time to investigate the effects of pressure on the structure and dynamics of the phosphocholine headgroup in pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) multilamellar aqueous dispersions and in DPPC bilayers containing the positively charged form of the local anesthetic tetracaine (TTC). The 31P chemical shift anisotropies, delta sigma, and the 31P spin-lattice relaxation times, T1, were measured as a function of pressure from 1 bar to 5 kbar at 50 degrees C for both pure DPPC and DPPC/TTC bilayers. This pressure range permitted us to explore the rich phase behavior of DPPC from the liquid-crystalline (LC) phase through various gel phases such as gel I (P beta'), gel II (L beta'), gel III, gel IV, gel X, and the interdigitated, Gi, gel phase. For pure DPPC bilayers, pressure had an ordering effect on the phospholipid headgroup within the same phase and induced an interdigitated Gi gel phase which was formed between the gel I (P beta') and gel II (L beta') phases. The 31P spin-lattice relaxation time measurements showed that the main phase transition (LC to gel I) was accompanied by the transition between the fast and slow correlation time regimes. Axially symmetric 31P NMR lineshapes were observed at pressures up to approximately 3 kbar but changed to characteristic axially asymmetric rigid lattice lineshapes at higher pressures (3.1-5.1 kbar).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
13C NMR spin-lattice relaxation (T1) rates and 13C-1H nuclear Overhauser effects (NOEs) were measured in an identical fashion in two lipid preparations having dramatically different curvatures. The T1 times that were obtained at four magnetic field strengths were fit along with the NOEs to simple models for lipid molecular dynamics. The results indicate that phospholipid chain ordering and dynamics are virtually identical in small and large unilamellar vesicles at the time scales sampled by these 13C-NMR studies. The order parameters and reorientational correlation times that characterize the amplitudes and rates of internal acyl chain motions were equal within experimental error for the methylene segments in the middle of the chains. The only significant differences in order parameters and correlation times between the two vesicle types were small and appeared at the ends of the acyl chains. At the carbonyl end the order was slightly higher in small vesicles than large vesicles, and at the methyl end the order was slightly lower for small vesicles. This indicates that in the more planar systems the acyl chains exhibit a slightly flatter order profile than in more highly curved membranes. The use of the same experimental approach in both small and large vesicle systems provided a more reliable and accurate assessment of the effect of curvature on molecular order than has been previously obtained.  相似文献   

17.
We propose a method for the determination of (15)N csa/dipolar cross-correlation rates based on the measurement of the two apparent transverse (or longitudinal) relaxation rates associated with each component of the nitrogen doublet (N(alpha) and N(beta)). This is achieved by inserting a spin state selective scheme in conventional inverse Carr-Purcell-Meiboom-Gill (or inversion-recovery) pulse sequence which allows for the edition of a HSQC-type spectrum for each of the spin states. Transverse cross-correlation rates necessitate two independent sets of measurements (for N(alpha) and N(beta), respectively), whereas for longitudinal cross correlation rates, besides N(alpha) and N(beta) measurements, the method requires the knowledge of both the (15)N longitudinal auto-relaxation rate and the longitudinal two-spin order (2NzHz) auto-relaxation rate. These additional parameters are mandatory because of the non-exponential behavior of the N(alpha) and N(beta) longitudinal decays. Conversely, the present method does not require any complex manipulation of 2D spectra, the cross-correlation rates being obtained from the difference of the two (N(alpha) and N(beta)) apparent relaxation rates. This approach is applied to (15)N-labelled ubiquitin at two different magnetic fields (9.4 T and 14.1 T).  相似文献   

18.
19.
(13)C spin-lattice relaxation times (T(1)) and nuclear Overhauser enhancements (NOE) were measured as a function of temperature and magnetic field strength for the hetero-polysaccharide hyaluronan in water solutions. The relaxation data of the endocyclic ring carbons were successfully interpreted in terms of chain segmental motions by using the bimodal time-correlation function of Dejean de la Batie, Laupretre and Monnerie. On the basis of the calculated correlation times for segmental motion and amplitudes of librational motions of the C-H vectors at the various carbon sites of the HA repeating unit, we concluded that intramolecular hydrogen bonding of the secondary structure of HA plays a major role in the conformational flexibility of this carbohydrate molecule. The internal rotation of the free hydroxymethyl groups about the exocyclic C-5-C-6 bonds superimposed on segmental motion has been described as a diffusion process of restricted amplitude. The rate and amplitude of the internal rotation indicate that the hydroxymethyl groups are not involved in intramolecular hydrogen bonding. Finally, the motional parameters describing the local dynamics of the HA chain were correlated with the secondary structure of HA in aqueous solutions.  相似文献   

20.
Single and multiple quantum nuclear magnetic resonance (NMR) spectroscopic techniques were used to investigate the motional dynamics of sodium and potassium ions in concentrated protein solution, represented in this study by cortical and nuclear bovine lens tissue homogenates. Both ions displayed homogeneous biexponential magnetic relaxation behavior. Furthermore, the NMR relaxation behavior of these ions in lens homogenates was consistent either with a model that assumed the occurrence of two predominant ionic populations, "free" and "bound," in fast exchange with each other or with a model that assumed an asymmetric Gaussian distribution of correlation times. Regardless of the model employed, both ions were found to occur in a predominantly "free" or "unbound" rapidly reorienting state. The fraction of "bound" 23Na+, assuming a discrete two-site model, was approximately 0.006 and 0.017 for cortical and nuclear homogenates, respectively. Corresponding values for 39K+ were 0.003 and 0.007, respectively. Estimated values for the fraction of "bound" 23Na+ or 39K+ obtained from the distribution model (tau C greater than omega L-1) were less than or equal to 0.05 for all cases examined. The correlation times of the "bound" ions, derived using either a two-site or distribution model, yielded values that were at least one order of magnitude smaller than the reorientational motion of the constituent lens proteins. This observation implies that the apparent correlation time for ion binding is dominated by processes other than protein reorientational motion, most likely fast exchange between "free" and "bound" environments. The results of NMR visibility studies were consistent with the above findings, in agreement with other studies performed by non-NMR methods. These studies, in combination with those presented in the literature, suggest that the most likely role for sodium and potassium ions in the lens appears to be the regulation of cell volume by affecting the intralenticular water chemical potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号