首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
With the aim of determining whether grafting could improve salinity tolerance of tomato (Lycopersicon esculentum Mill.), and what characteristics of the rootstock were required to increase the salt tolerance of the shoot, a commercial tomato hybrid (cv. Jaguar) was grafted onto the roots of several tomato genotypes with different potentials to exclude saline ions. The rootstock effect was assessed by growing plants at different NaCl concentrations (0, 25, 50, and 75 mM NaCl) under greenhouse conditions, and by determining the fruit yield and the leaf physiological changes induced by the rootstock after 60 d and 90 d of salt treatment. The grafting process itself did not affect the fruit yield, as non-grafted plants of cv. Jaguar and those grafted onto their own root showed the same yield over time under non-saline conditions. However, grafting raised fruit yield in Jaguar on most rootstocks, although the positive effect induced by the rootstock was lower at 25 mM NaCl than at 50 and 75 mM NaCl. At these higher levels, the plants grafted onto Radja, Pera and the hybrid VolgogradskijxPera increased their yields by approximately 80%, with respect to the Jaguar plants. The tolerance induced by the rootstock in the shoot was related to ionic rather than osmotic stress caused by salinity, as the differential fruit yield responses among graft combinations were mainly related to the different abilities of rootstocks to regulate the transport of saline ions. This was corroborated by the high negative correlation found between fruit yield and the leaf Na(+) or Cl(-) concentrations in salt-treated plants after 90 d of salt treatment. In conclusion, grafting provides an alternative way to enhance salt tolerance, determined as fruit yield, in the tomato, and evidence is reported that the rootstock is able to reduce ionic stress.  相似文献   

2.
If the main effect of long-term exposure of tomato plants to salinity is the accumulation of toxic concentrations of Na+ and Cl in the leaves, then the selection of ‘excluder’ rootstocks should increase tolerance to salinity in grafted tomato plants, independently of the genotype used as the scion. The question addressed in this study is whether shoot genotypes with an ‘excluder’ character are able to increase their salt tolerance when grafted onto rootstocks of the same characteristics. Moneymaker (with excluder character) was grafted onto two root genotypes, Radja and Pera, selected for their very different ability to regulate the transport of saline ions to the shoot over time. Grafting onto either Pera or Radja improved fruit yield compared to the self-grafted plants of Moneymaker (M/M) when the plants were grown at 50 mM NaCl, whereas there was no effect of either rootstock or of grafting per se (M/M) on fruit yield in the absence of or at 25 mM NaCl. The relationship between the salt responses to mid- and long-term depended on the stress level; after 27 d of 150 mM NaCl treatment, both graft combinations enhanced similarly their salt tolerances as did in the long-term experiment. Moreover, the tolerance induced by rootstock was related to the low rates of saline ion accumulation in their leaves. However, the positive effect of rootstock was only observed with rootstock Pera when the grafted plants were grown at 50 mM NaCl (the same salt level used in the long-term experiment) for 35 d. According to the physiological changes induced by rootstock in the leaves, the different salt responses seem to be due to the fact that the osmotic effect predominated on the toxic effect under these last conditions. Consequently, in order to select rootstocks care must be taken in the timing of any selection process: the stress level and length of exposure to salinity must be sufficient for the true differences in salt tolerance for toxicity to be shown. Taken together, these results show the effectiveness of grafting to enhance fruit yield in tomato and provide evidence that the positive effect induced by rootstock is related to the re-establishment of ionic homeostasis.  相似文献   

3.
Plants regenerated from tobacco (Nicotiana tabacum L. cv. Wisconsin 38) cells that were adapted to 428 mM NaCl were found to have hexaploid or near-hexaploid chromosome numbers compared to the normal tetraploid, 2N(2C)=4X=48 chromosome numbers of plants regenerated from unadapted cells. Even though cells with chromosome numbers other than hexaploid were found in the cell population only hexaploid plants were regenerated. The hexaploid condition may impart some karyotypic stability that allows more efficient morphogenic activity. The hexaploid condition could not be correlated with several phenotypic alterations associated with plants regenerated from adapted cells, including male sterility and increased salt tolerance.  相似文献   

4.
Our hypothesis is that Lotus glaber (a glycophytic species, highly tolerant to saline-alkaline soils) displays a plastic root phenotypic response to soil salinity that may be influenced by mycorrhizal and rhizobial microorganisms. Uninoculated plants and plants colonised by Glomus intraradices or Mesorhizobium loti were exposed to either 150 or 0 mM NaCl. General plant growth and root architectural parameters (morphology and topology) were measured and phenotypic plasticity determined at the end of the salt treatment period. Two genotypes differing in their salt tolerance capacity were used in this study. G. intraradices and M. loti reduced the total biomass of non-salinised, sensitive plants, but they did not affect that of corresponding tolerant ones. Root morphology of sensitive plants was greatly affected by salinity, whereas mycorrhiza establishment counteracted salinity effects. Under both saline conditions, the external link length and the internal link length of mycorrhizal salt-sensitive plants were higher than those of uninoculated control and rhizobial treatments. The topological trend (TT) was strongly influenced by genotype x symbiosis interaction. Under non-saline conditions, nodulated root systems of the sensitive plant genotype had a more herringbone architecture than corresponding uninoculated ones. At 150 mM NaCl, nodulated root systems of tolerant plants were more dichotomous and those of the corresponding sensitive genotype more herringbone in architecture. Notwithstanding the absence of a link between TTs and variations in plant growth, it is possible to predict a dissimilar adaptation of plants with different TTs. Root colonisation by either symbiotic microorganisms reduced the level of root phenotypic plasticity in the sensitive plant genotype. We conclude that root plasticity could be part of the general mechanism of L. glaber salt tolerance only in the case of non-symbiotic plants.  相似文献   

5.
Wang  Chunlei  Wei  Lijuan  Zhang  Jing  Hu  Dongliang  Gao  Rong  Liu  Yayu  Feng  Li  Gong  Wenting  Liao  Weibiao 《Journal of Plant Growth Regulation》2023,42(1):275-293

Salinity impairs plant growth and development, thereby leading to low yield and inferior quality of crops. Nitric oxide (NO) has emerged as an essential signaling molecule that is involved in regulating various physiological and biochemical processes in plants. In this study, tomato seedlings of Lycopersicum esculentum L. “Micro-Tom” treated with 150 mM sodium chloride (NaCl) conducted decreased plant height, total root length, and leaf area by 25.43%, 24.87%, and 33.67%, respectively. While nitrosoglutathione (GSNO) pretreatment ameliorated salt toxicity in a dose-dependent manner and 10 µM GSNO exhibited the most significant mitigation effect. It increased the plant height, total root length, and leaf area of tomato seedlings, which was 31.44%, 20.56%, and 51.21% higher than NaCl treatment alone, respectively. However, NO scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide potassium (cPTIO) treatment reversed the positive effect of NO under salt stress, implying that NO is essential for the enhancement of salt tolerance. Additionally, NaCl?+?GSNO treatment effectively decreased O2? production and H2O2 content, increased the levels of soluble sugar, glycinebetaine, proline, and chlorophyll, and enhanced the activities of antioxidant enzymes and the content of antioxidants in tomato seedlings in comparison with NaCl treatment, whereas NaCl?+?cPTIO treatment significantly reversed the effect of NO under salt stress. Moreover, we found that GSNO treatment increased endogenous NO content, S-nitrosoglutathione reductase (GSNOR) activity, GSNOR expression and total S-nitrosylated level, and decreased S-nitrosothiol (SNO) content under salt stress, implicating that S-nitrosylation might be involved in NO-enhanced salt tolerance in tomatoes. Altogether, these results suggest that NO confers salt tolerance in tomato seedlings probably by the promotion of photosynthesis and osmotic balance, the enhancement of antioxidant capability and the increase of protein S-nitrosylation levels.

  相似文献   

6.
Tolerance of salt stress in potato (Solanum tuberosum L.) increased when the plants were pre-exposed to low concentrations of salt (salt acclimation). This acclimation was accompanied by increased levels of abscisic acid (ABA) in the shoot. To further study the role of roots and shoots in this acclimation process, reciprocal grafts were made between a salt-tolerant (9506) and salt-sensitive ABA(−) mutant and its ABA(+) normal sibling potato genotype. The grafted plants were acclimated with 75 or 100 mM NaCl for 3 weeks and then exposed to 150–180 mM NaCl, depending on the salt tolerance of the rootstock. After 2 weeks of exposure to the salt stress, the acclimated and unacclimated plants were compared for physiologic and morphologic parameters. The response to the salt stress was strongly influenced by the rootstock. The salt-tolerant 9506 rootstock increased the salt tolerance of scions of both the ABA-deficient mutant and its ABA(+) sibling. This salt tolerance induced by the rootstock was primarily modulated by salt acclimation and manifested in the scion via increased plant water content, stem diameter, dry matter accumulation, stomatal conductivity, and osmotic potential, and is associated with a reduction in leaf necrosis. There was also a pronounced scion effect on the rootstock. Using 9506 as a scion significantly increased root fresh and dry weights, stem diameter, and root water content of ABA(−) mutant rootstocks. Specific evidence was found of the role of exogenous ABA in the enhancement of water status in grafted plants under salt stress beyond that of grafting alone. This was verified by more positive stomatal conductivity and upward water flow in ABA-treated grafted and nongrafted plants and the absence of upward water flow in nontreated grafted plants through NMR imaging. Grafting using either salt-tolerant scions or rootstocks with inherently high ABA levels may positively modify subsequent responses of the plant under salt stress.  相似文献   

7.
The medium of tomato (Lycopersicon esculentum) cells adapted to grow in the presence of 15 g l–1 NaCl had a higher peroxidase activity than the medium of an unadapted tomato cell line. When the adapted cells were cultured in a medium without NaCl, the value found for peroxidase activity was intermediate. The increase in peroxidase activity was parallel to an increase of lignin-like compounds in the cell walls, as well as to an increased content or appearance of neutral and basic peroxidase isoenzymes. Apparently, the high values of peroxidase activity in the medium of the salt-adapted cells reflect the changed mechanical properties of the cell wall which, in turn, could be related to the salt adaptation process.Abbreviations LO Control tomato cell line unable to grow in the presence of 15 g 1–1 of NaCl - L15 tomato cell line adapted to 15 g 1–1 of NaCl and growing in this salt concentration - L15-0 tomato cell line adapted to 15 g 1–1 of NaCl and growing in the absence of this salt - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - PBS phosphate buffer saline  相似文献   

8.
Salinity is one of the major abiotic stresses affecting plant productivity. Tomato (Solanum lycopersicum L.), an important and widespread crop in the world, is sensitive to moderate levels of salt in the soil. To generate tomato plants that can adapt to saline soil, AVP1, a vacuolar H(+)-pyrophosphatase gene from Arabidopsis thaliana, and PgNHX1, a vacuolar Na(+)/H(+) antiporter gene from Pennisetum glaucum, were co-expressed by Agrobacterium tumefaciens-mediated transformation. A sample of transformants was self-pollinated, and progeny were evaluated for salt tolerance in vitro and in vivo. It is reported here that co-expression of AVP1 and PgNHX1 confers enhanced salt tolerance to the transformed tomato compared with the AVP1 and PgNHX1 single gene transgenic plants and the wild-type. These transgenic plants grew well in the presence of 200 mM NaCl while wild-type plants exhibited chlorosis and died within 3 weeks. The transgenic line co-expressing AVP1 and PgNHX1 retained more chlorophyll and accumulated 1.4 times more proline as a response to stress than single gene transformants. Moreover, these transgenic plants accumulated a 1.5 times higher Na(+) content in their leaf tissue than the single gene transformants. The toxic effect of Na(+) accumulation in the cytosol is reduced by its sequestration into the vacuole. The physiological analysis of the transgenic lines clearly demonstrates that co-expression of AVP1 and PgNHX1 improved the osmoregulatory capacity of double transgenic lines by enhanced sequestration of ions into the vacuole by increasing the availability of protons and thus alleviating the toxic effect of Na(+).  相似文献   

9.
We studied the salt stress (100 mM NaCl) effects on the diurnal changes in N metabolism enzymes in tomato seedlings (Lycopersicon esculentum Mill. cv. Chibli F1) that were grown under high nitrogen (HN, 5 mM NO(3)(-)) or low nitrogen (LN, 0.1 mM NO(3)(-)). NaCl stress led to a decrease in plant DW production and leaf surface to higher extent in HN than in LN plants. Total leaf chlorophyll (Chl) content was decreased by salinity in HN plants, but unchanged in LN plants. Soluble protein content was decreased by salt in the leaves from HN and LN plants, but increased in the stems-petioles from LN plants. Nitrate reductase (NR, EC 1.6.1.6) showed an activity peak during first part of the light period, but no diurnal changes were observed for the nitrite reductase (NiR, EC 1.7.7.1) activity. Glutamine synthetase (GS, EC 6.3.1.2) and glutamate synthase (Fd-GOGAT, EC 1.4.7.1) activities increased in HN plant leaves during the second part of the light period, probably when enough ammonium is produced by nitrate reduction. NR and NiR activities in the leaves were more decreased by NaCl in LN than in HN plants, whereas the opposite response was obtained for the GS activity. Fd-GOGAT activity was inhibited by NaCl in HN plant leaves, while salinity did not shift the peak of the NR and Fd-GOGAT activities during a diurnal cycle. The induction by NaCl stress occurred for the NR and GS activities in the roots of both HN and LN plants. Glutamate dehydrogenase (GDH, EC 1.4.1.2) activity shifted from the deaminating activity to the aminating activity in all tissues of HN plants. In LN plants, both aminating and deaminating activities were increased by salinity in the leaves and roots. The differences in the sensitivity to NaCl between HN and LN plants are discussed in relation to the N metabolism status brought on by salt stress.  相似文献   

10.
Growth, viability and proline content of adapted and unadapted calluses of Nicotiana tabacum L. var. Jayasri, affected due to osmotic stresses and particularly to stress-shocks treated with different osmotica like NaCl (ionic-penetrating), mannitol (non-ionic-penetrating) and polyethylene glycol, (PEG) (non-ionic-non penetrating) were studied to evaluate the physiological differences of stress effects. The tissues adapted to a low concentration of NaCl (85 mM) showed low growth with high proline content compared to the tissues adapted to a low concentration of mannitol (165 mM). Proline content was similar in tissues adapted to high concentrations of NaCl (171 mM) and mannitol (329 mM) but growth in the latter case was relatively low. Growth and viability were subsequently correlated with the pattern of retention in or diffusion of proline out of the tissues after shock-treatments. The loss of tissue viability of the adapted calluses was comparatively less than the unadapted callus even after shock-treatments with 1282 mM NaCl and 823 mM mannitol. The former calluses retained the capability of regrowth though at a slow rate. Such adapted tissues also retained more proline. The mannitol-adapted tissues, when shocked with PEG (200 g l-1), showed low viability with more diffusion and a very little retention of proline while, in the unadapted tissue, all the proline was leached out. The results indicated that the effects of different osmotica on plant tissue varied depending upon the physico-chemical nature of the compounds used as stress-inducing-agents, and retention and diffusion of proline was altered when the tissues were shocked with high concentrations of all these compounds. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
12.
The possible use of in vitro shoot morphogenesis and shoot apex culture to evaluate salt tolerance in cultivated tomato (Lycopersicon esculentum Mill.) has been analyzed, using two cultivars with similar salt tolerance, Pera and Hellfrucht frühstamm (HF). The effect of salt on shoot regeneration was studied by culturing leaf explants on media supplemented with 0, 43, 86, 129 and 172 mM NaCl. The presence of NaCl in the regeneration media at 86 mM strongly inhibited shoot regeneration in the cultivar HF, but not in Pera. However, the substitution of NaCl by mannitol, maintaining the same water potential in the culture media, decreased the regeneration percentage in Pera but did not affect HF. Shoot apices of both cultivars were also subcultured at 6-week intervals, for 4 subcultures, at the same NaCl concentrations as used in the previous experiment, and the shoot growth, leaf and root number, rooted shoot and shoot necrosis were recorded at the end of each subculture. Root formation was the parameter most affected by salt in both cultivars, Pera being more sensitive than HF. The substitution of NaCl by mannitol significantly increased the percentage of rooted shoots in Pera after four subcultures, and slightly decreased this percentage in HF. Shoot necrosis was only observed in the last subculture at NaCl higher than 86 mM, the percentage of necrotic shoots being higher in Pera than in HF (75% and 45%, respectively). The lack of agreement between the results obtained with the in vitro tests, e.g., adventitious shoot formation and growth of apical stem sections, suggests that this approach may not be a reliable tool to evaluate salt tolerance in cultivated tomato. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The glyoxalase system plays an important role in various physiological processes in plants, including salt stress tolerance. We report the effects of overexpressing glyoxalase I and glyoxalase II genes in transgenic tomato (Solanum lycopersicum Mill.) cv. Ailsa Craig. Stable expression of both transgenes was detected in the transformed tomato plants under salt stress. The transgenic lines overexpressing GlyI and GlyII under a high NaCl concentration (800 mM) showed reduced lipid peroxidation and the production of H2O2 in leaf tissues. A greater decrease in the chlorophyll a+b content in wild-type (WT) compared with transgenic lines was also observed. These results suggest that the over expression of two genes, GlyI and GlyII, may enhance salt stress tolerance by decreasing oxidative stress in transformed tomato plants. This work will help our understanding of the putative role of the glyoxalase system in the tolerance to abiotic stress in tomato plants.  相似文献   

14.
The responses to NaCl of cultured leaf discs and leaflets derived from fully differentiated leaves and of shoot apices excised from the cultivated tomato Lycopersicon esculentum Mill. and its wild salt-tolerant relatives L. peruvianum (L.) Mill, and Solanum pennellii Cor were compared. The results suggest that the tolerance of the whole plant to salt depends largely on the tolerance of plant organs containing meristematic tissues rather than on tissues already differentiated. This suggestion is based on the positive correlation found between the response to NaCl of shoot apices and of the whole plant, i.e. both whole plants and apices of the wild species were more resistant to salt than those of the cultivated species. No difference was found among the species with respect to the responses of the fully differentiated parts. The ion balance (K+/Na+ and Cl/Na+) in detached leaves and apices exposed to salt was different from the balance in the same parts while attached to the salt-treated plant. This difference may be due to the severance of the excised parts from the major sites controlling the balance of ions in the whole plant.  相似文献   

15.
Soil salinity is one of the major abiotic stress limiting crop productivity and the geographical distribution of many important crops worldwide. To gain a better understanding of the salinity stress responses at physiological and molecular level in cultivated tomato (Solanum lycopersicum. cv. Supermarmande), we carried out a comparative physiological and proteomic analysis. The tomato seedlings were cultivated using a hydroponic system in the controlled environment growth chamber. The salt stress (NaCl) was applied (0, 50, 100, 150 and 200?mM), and maintained for 14 days. Salt treatment induced a plant growth reduction estimated as fresh-dry weight. Photosynthetic pigments (chlorophyll a, b) content of NaCl-treated tomato plants was significantly decreased as the salinity level increased. Proline accumulation levels in leaf and root tissues increased significantly with increasing NaCl concentration. Relative electrolyte leakage known as an indicator of membrane damage caused by salt stress was increased proportionally according to the NaCl concentrations. Roots of control and salt-stressed plants were also sampled for phenol protein extraction. Proteins were separated by two-dimensional gel electrophoresis (2-DGE). Several proteins showed up- and downregulation during salt stress. MALDI-TOF/MS analysis and database searching of some of the identified proteins indicated that the proteins are known to be in a wide range of physiological processes, that is, energy metabolism, ROS (reactive oxygen species) scavenging and detoxification, protein translation, processing and degradation, signal transduction, hormone and amino acid metabolism, and cell wall modifications. All proteins might work cooperatively to reestablish cellular homeostasis under salt stress, water deficiency, and ionic toxicity.  相似文献   

16.
Abiotic stresses, especially salinity and drought, are major limiting factors for plant growth and crop productivity. In an attempt to develop salt and drought tolerant tomato, a DNA cassette containing tobacco osmotin gene driven by a cauliflower mosaic virus 35S promoter was transferred to tomato (Solanum lycopersicum) via Agrobacterium-mediated transformation. Putative T0 transgenic plants were screened by PCR analysis. The selected transformants were evaluated for salt and drought stress tolerance by physiological analysis at T1 and T2 generations. Integration of the osmotin gene in transgenic T1 plants was verified by Southern blot hybridization. Transgenic expression of the osmotin gene was verified by RT-PCR and northern blotting in T1 plants. T1 progenies from both transformed and untransformed plants were tested for salt and drought tolerance by subjecting them to different levels of NaCl stress and by withholding water supply, respectively. Results from different physiological tests demonstrated enhanced tolerance to salt and drought stresses in transgenic plants harboring the osmotin gene as compared to the wild-type plants. The transgenic lines showed significantly higher relative water content, chlorophyll content, proline content, and leaf expansion than the wild-type plants under stress conditions. The present investigation clearly shows that overexpression of osmotin gene enhances salt and drought stress tolerance in transgenic tomato plants.  相似文献   

17.
The hot pepper xyloglucan endo-trans-gluco-sylase/hydrolase (CaXTH3) gene that was inducible by a broad spectrum of abiotic stresses in hot pepper has been reported to enhance tolerance to drought and high salinity in transgenic Arabidopsis. To assess whether CaXTH3 is a practically useful target gene for improving the stress tolerance of crop plants, we ectopically over-expressed the full-length CaXTH3 cDNA in tomato (Solanum lycopersicum cv. Dotaerang) and found that the 35S:CaXTH3 transgenic tomato plants exhibited a markedly increased tolerance to salt and drought stresses. Transgenic tomato plants exposed to a salt stress of 100?mM NaCl retained the chlorophyll in their leaves and showed normal root elongation. They also remained green and unwithered following exposure to 2?weeks of dehydration. A high proportion of stomatal closures in 35S:CaXTH3 was likely to be conferred by increased cell-wall remodeling activity of CaXTH3 in guard cell, which may reduce transpirational water loss in response to dehydration stress. Despite this increased stress tolerance, the transgenic tomato plants showed no detectable phenotype defects, such as abnormal morphology and growth retardation, under normal growth conditions. These results raise the possibility that CaXTH3 gene is appropriate for application in genetic engineering strategies aimed at improving abiotic stress tolerance in agriculturally and economically valuable crop plants.  相似文献   

18.
In order to investigate the role of Si in alleviating the deleterious effects of salinity on tomato plant growth, the tomato cultivar Moneymaker was grown with 0 or 80mM NaCl combined with 0 and 2.5mM Si. Plant growth parameters, salt accumulation in plant tissues and plant water relations were analysed. Si treatment did not alter salt input into the plant or salt distribution between plant organs. There were non-significant differences in plant water uptake, but plant water content in salinised plants supplied with Si was 40% higher than in salinised plants that were not supplied with Si. Plants treated with NaCl alone showed a reduction in plant dry weight and total plant leaf area of 55% and 58%, respectively, while the reduction in plants treated with NaCl plus Si was only 31% and 22%, respectively. Leaf turgor potential and net photosynthesis rates were 42% and 20% higher in salinised plants supplied with Si than in salinised plants that were not supplied with Si. Water use efficiency calculated from instantaneous gas exchange parameters and as the ratio between plant dry matter and plant water uptake were, respectively, 17% and 16% higher in salinised plants supplied with Si. It can be concluded that Si improves the water storage within plant tissues, which allows a higher growth rate that, in turn, contributes to salt dilution into the plant, mitigating salt toxicity effects.  相似文献   

19.
Azolla pinnata is an extremely NaCl-sensitive plant and cannot tolerate an external NaCl concentration beyond 30 mM. Preincubation of plants in 20 mM NaCl for 18 days, followed by stepwise transfer (10 mM NaCl per day) made them able to grow at an otherwise lethal NaCl concentration of 60 mM at rates comparable to the growth of unadapted plants in 20 mM NaCl. Plants, not preincubated in 20 mM NaCl or preincubated for a duration shorter than 18 days were unable to survive and did not grow in 60 mM external NaCl. Na+, K+ and Ca2+ concentrations in the control, NaCl-stressed and adapted plants differed significantly indicating that adaptation involved the development of a capability in the plants to regulate ion concentration.  相似文献   

20.
Summary If in vitro culture is to be used for evaluating the salt tolerance of tomato hybrids and segregant populations in a breeding programme, it is previously necessary to get quick and reliable traits. In this work, growth and physiological responses to salinity of two interspecific hybrids between the cultivated tomato (Lycopersicon esculentum Mill) and its wild salt-tolerant species L pennellii are compared to those of their parents. The leaf callus of the first subculture was grown on media amended with 0, 35, 70, 105, 140, 175 and 210 mM NaCl for 40 days. Relative fresh weight growth of callus in response to increased salinity in the culture medium was much greater in L pennellii than in the tomato cultivars, and greater in the hybrids than in the wild species. Moreover, the different salt tolerance degree of hybrids was related to that of female parents. At high salt levels, only Cl accumulation was higher in L pennellii than in tomato cultivars, whereas in the hybrids both Cl, and Na+ accumulation were higher than in their parents. Proline increased with salinity in the callus of all genotypes; these increases were much higher in the tomato cultivars than in L pennellii, and the hybrids showed a similar response to that of the wild species. Salt-treated callus of the tomato cultivars showed significant increases in valine, isoleucine and leucine contents compared to control callus tissue. In contrast, these amino acids in callus tissues of the wild species and hybrids showed a tendency to decrease with increasing salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号