首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beggiatoa alba strain B18LD was grown in continuous culture under heterotrophic conditions on acetate or acetate and asparagine and under mixotrophic conditions on acetate plus either 1 mM sodium sulfide or 1 mM sodium thiosulfate. Considerable differences were observed between the yields and the cell compositions of heterotrophic and mixotrophic cultures at all dilution rates tested. The dry weight yield per gram acetate utilized was approximately three times higher in the acetate-sulfide mixotrophic culture than in the acetate heterotrophic culture, whereas the poly--hydroxybutyric acid and carbohydrate contents were much higher in the heterotrophic cultures. The high yields (0.52–0.75, corrected for the weight of the sulfur) obtained with the mixotrophic cultures imply that the acetate was utilized mainly for biosynthesis. Thus, the oxidation of sulfide supplied energy. The addition of catalase to the chemostat cultures increased yields slightly, but it was insufficient to explain the differences between the heterotrophic and the mixotrophic cultures.  相似文献   

2.
The interaction of sulfide oxidation and protein synthesis by Beggiatoa alba B18LD was investigated using the incorporation of radiolabeled leucine to estimate protein synthesis. Leucine was assimilated into whole cells in the presence of 6.1 mM acetate at a rate of 0.6 nmol · min-1 · mg protein-1, 43% of which was incorporated into the protein fraction. Protein synthesis by B. alba was unaffected by 1 mM sulfide, whether or not the cells had been preincubated with sulfide. B. alba oxidized radioactive sulfide to sulfur within 30 s of addition of the label, whether or not the organism was preinduced by sulfide. Furthermore, chloramphenicol, which inhibited protein synthesis, did not significantly inhibit sulfide oxidation by sulfide-induced or uninduced B. alba. This indicates that sulfide oxidation is a constitutive process. Enrichments of sulfur inclusions from B. alba B18LD that were analyzed by polyacrylamide gel electrophoresis demonstrated two enriched peptides with Mr values of 13,000 and 15,000. The 13,000 and 15,000 Mr peptide bands were more evident in cells grown in a medium containing sulfide than in cells from a medium lacking sulfide. Although sulfide did not increase the rate of overall protein synthesis, the synthesis of a few peptides was increased by the addition of sulfide to the growth medium. Among those, the 15,000 Mr peptide was one of the most distinctive.Non-standard abbreviations SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis - PPO 2,5-diphenyloxazole - POPOP 1,4-bis [5-phenyl-2-oxazolyl]-benzene - BSS basal salts solution - BH Beggiatoa heterotrophic (medium) - BSO Beggiatoa sulfide oxidation (medium) - CM chloramphenicol - TCA trichloroacetic acid - Mr molecular mass  相似文献   

3.
An alkaline 5-phosphodiesterase (5-PDE) from barley (Hordeum distichum) malt sprouts was partially purified by thermal treatment and acetone precipitation to diminish phosphomonoesterase (PME) activity. 5-PDE was purified 40-fold to a specific activity of 30 U mg–1 protein with a final yield of about 32%. With synthetic substrate, the enzyme had an optimum pH of 8.9, maximum activity at 70 °C over 10 min, and a Km of 0.26 mM. The partially purified enzyme was activated by 10 mM Mg2+ up to 168% of the original activity, while Zn2+, Mn2+ and Cu2+ ions, chelating agent (EDTA) and NaN3 (1–10 mM), and 5-ribonucleotides (1–5 mM) were inhibitory. Final enzyme preparation was stable over 8 d at 4 °C), at 70 °C for up to 120 min and without loss of activity over 90 d at –18 °C.  相似文献   

4.
Crude extracts of Rhodospirillum rubrum catalyzed the formation of acid-volatile radioactivity from (35S) sulfate, (35S) adenosine-5-phosphosulfate, and (35S) 3-phosphoadenosine-5-phosphosulfate. An enzyme fraction similar to APS-sulfotransferases from plant sources was purified 228-fold from Rhodospirillum rubrum. It is suggested here that this enzyme is specific for adenosine-5-phosphosulfate, because the purified enzyme fraction metabolized adenosine-5-phosphosulfate, however, only at a rate of 1/10 of that with adenosine-5-phosphosulfate. Further, the reaction with 3-phosphoadenosine-5-phosphosulfate was inhibited with 3-phosphoadenosine-5-phosphate whereas this nucleotide had no effect on the reaction with adenosine-5-phosphosulfate. For this activity with adenosine-5-phosphosulfate the name APS-sulfotransferase is suggested. This APS-sulfotransferase needs thiols for activity; good rates were obtained with either dithioerythritol or reduced glutathione; other thiols like cysteine, 2-3-dimercaptopropanol or mercaptoethanol are less effective. The electron donor methylviologen did not catalyze this reaction. The pH-optimum was about 9.0; the apparent K m for adenosine-5-phosphosulfate was determined to be 0.05 mM with this so far purified enzyme fraction. Enzyme activity was increased with K2SO4 and Na2SO4 and was inhibited by 5-AMP. These properties are similar to assimilatory APS-sulfotransferases from spinach and Chlorella.Abbreviations APS adenosine-5-phosphosulfate - PAPS 3-phosphoadenosine-5-phosphosulfate - 5-AMP adenosine-5-monophosphate - 3-AMP adenosine-3-monophosphate - 3-5-ADP 3-phosphoadenosine-5-phosphate (PAP) - DTE dithiorythritol - GSH reduced glutathione - BAL 2-3-dimercaptopropanol  相似文献   

5.
Isopropylidenation of lactose with 2,2-dimethoxypropane in the presence ofp-toluenesulfonic acid gave two products, which were identified by1H- and13C-NMR as 2,35,63,4-tri-O-isopropylidenelactose dimethyl acetal (1) and its 6-O-(2-methoxy)-isopropyl derivative (2). These products were used for the synthesis of 2-O-methyllactose (7), 2,6-di-O-methyllactose (9) and 2-O-benzyllactose (13).  相似文献   

6.
Isogenic strains of Escherichia coli that were defective in either of the two major aerobic terminal respiratory oxidases (cytochromes bo and bd) or in the putative third oxidase (cytochrome bd-II) were studied to elucidate role(s) for oxidases in protecting cells from oxidative stress in the form of H2O2 and paraquat. Exponential phase cultures of all three oxidase mutants exhibited a greater decline in cell viability when exposed to H2O2 stress compared to the isogenic parent wild-type strain. Cytochrome bo mutants showed the greatest sensitivity to H2O2 under all conditions studied indicating that this oxidase was crucial for protection from H2O2 in E. coli. Cell killing of all oxidase mutants by H2O2 was by an uncharacterized mechanism (mode 2 killing) with cell growth rate affected. The expression of (katG-lacZ), an indicator of intracellular H2O2, was 2-fold higher in a cydAB::kan mutant compared to the wild-type strain at low H2O2 concentrations (< 100 M) suggesting that cytochrome bd mutants were experiencing higher intracellular levels of H2O2. Protein fusions to the three oxidase genes demonstrated that expression of genes encoding cytochrome bd, but not cytochrome bo or cytochrome bd-II was increased in the presence of external H2O2. This increase in expression of (cydA-lacZ) by H2O2 was further enhanced in a cyo::kan mutant. The level of cytochrome bd determined spectrally and (cydA-lacZ) expression was 5-fold and 2-fold higher respectively in an rpoS mutant compared to isogenic wild-type cells suggesting that RpoS was a negative regulator of cytochrome bd. Whether the effect of RpoS is direct or indirect remains to be determined.  相似文献   

7.
Photosynthetic c-type cytochromes isolated from various pro- and eukaryotic algae have been compared by an immunochemical method. Thereby the extent of cross-reactivity of several cytochromes with antisera to cytochrome c from Spirulina platensis, Bumilleriopsis filiformis, and Scenedesmus acutus was quantitatively determined by antigen-binding tests. When immunological relationship is taken as a measure of structural relationship, the following conclusions can be drawn: (1) c-type cytochromes from Anabaena variabilis, Nostoc muscorum, Calothrix membranacea, and Spirulina platensis show large differences in cross-reactivity. (2) The acidic Spirulina cytochrome c is fairly closely related to the two eukaryotic cytochromes assayed here.Abbreviations SAUG Sammlung von Algenkulturen am Pflanzenphysiologischen Institut der Universität Göttingen, FRG - PCC Pasteur Culture Collection  相似文献   

8.
Su V  Hsu BD 《Biotechnology letters》2003,25(22):1933-1939
Anthocyanins are responsible for reds through blues in flowers. Blue and violet flowers generally contain derivatives of delphinidin, whereas red and pink flowers contain derivatives of cyanidin or pelargonidin. Differences in hydroxylation patterns of these three major classes of anthocyanidins are controlled by the cytochrome P450 enzymes. Flavonoid-3',5'-hydroxylase, a member of the cytochrome P450 family, is the key enzyme in the synthesis of 3',5'-hydroxylated anthocyanins, generally required for blue or purple flowers. Here we report on the isolation of a cDNA clone of a putative flavonoid-3',5'-hydroxylase gene from Phalaenopsis that was then cloned into a plant expression vector. Transient transformation was achieved by particle bombardment of Phalaenopsis petals. The transgenic petals changed from pink to magenta, indicating that the product of the putative flavonoid-3',5'-hydroxylase gene influences anthocyanin pigment synthesis.  相似文献   

9.
Periplasmic extract from Desulfovibrio desulfuricans (NCIMB 8372) was found to contain two different c-type cytochromes. One is tetraheme cytochrome c3 and the other is monoheme cytochrome c553. Cytochrome c3 could be purified by a procedure involving only one chromatographic step, whereas cytochrome c553 required several such steps. Cytochrome c3 was found to have a relative molecular mass of 14300 and an isoionic point higher than 9. Analysis of the redox potentials indicated one heme at -260 mV and three hemes around -330 mV. Cytochrome c553 had a relative molecular mass of 7200, an isoionic point higher than 9 and a redox potential of 0 mV.  相似文献   

10.
Yeast PAPS reductase: properties and requirements of the purified enzyme   总被引:5,自引:0,他引:5  
The enzymatic mechanism of sulphite formation in Saccharomyces cerevisiae was investigated using a purified 3-phosphoadenylsulphate (PAPS) reductase and thioredoxin. The functionally active protein (MR 80–85 k) is represented by a dimer which reduces 3-phosphoadenylyl sulphate to adenosine-3,5-bisphosphate and free sulphite at a stoichiometry of 1:1. Reduced thioredoxin is required as cosubstrate. Examination of the reaction products showed that free anionic sulphite is formed with no evidence for bound-sulphite(s) as intermediate. V max of the enriched enzyme was 4–7 nmol sulphite · min-1 · mg-1 using the homologous thioredoxin from yeast. The velocity of reaction decreased to 0.4 nmol sulphite · min-1 · mg-1 when heterologous thioredoxin (from Escherichia coli) was used instead. The K m of homologous thioredoxin was 0.6 · 10-6 M, for the heterologous cosubstrate it increased to 1.4 · 10-6 M. The affinity for PAPS remained practically unaffected (K m PAPS: 19 · 10-6 M in the homologous, and 21 · 10-6 M in the heterologous system). From the kinetic data it is concluded that the enzyme followed an ordered mechanism with thioredoxin as first substrate followed by PAPS as the second. Parallel lines in the reciprocal and a common intersect in the Hanes-plots for thioredoxin were seen as indication of a ping-pong (with respect to thioredoxin) uni-bi (with respect to PAPS) mechanism.Abbreviations APS adenylyl sulphate - DTE dithioerythritol - DTT dithiothreitol - HPLC high performance liquid chromatography - IEF isoelectric focusing - LSC liquid scintillation counting - 3,5-PAP adenosine-3,5-bisphosphate - PAPS 3-phosphoadenylyl sulphate - PEP phospho-(enol)pyruvate - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - Tris 2-amino-2-hydroxymethyl-1,3-propanediol  相似文献   

11.
The role of de novo synthesis in the regulation of adenosine 5-phosphosulfate sulfotransferase activity by H2S inLemna minor L. was investigate using density labeling with15N applied as15NO 3 in the culture medium. While adenosine 5-phosphosulfate sulfotransferase activity was rapidly reduced by H2S and rapidly recovered upon removal of H2S, O-acetyl-L-serine sulfhydrylase (EC 4.2.99.8) did not show changes in extractable activity in response to H2S and could therefore be used as an internal marker enzyme for density labeling. The incorporation of15N into adenosine 5-phosphosulfate sulfotransferase was strongly reduced upon transfer of plants into a H2S-containing atmosphere. Half-maximal labeling was reached only after 70–80 h compared to 40–50 h in the control. After removal of H2S, adenosine 5-phosphosulfate sulfotransferase activity increased to the initial level within 20 h, and the enzyme reached halfmaximal labeling after only 15 h. The time course of the density increase of O-acetyl-L-serine sulfhydrylase was not affected very significantly by H2S. These results provide evidence that de novo synthesis of enzyme protein is involved in the regulation of adenosine 5-phosphosulfate sulfotransferase activity by H2S.Abbreviations APS adenosine 5-phosphosulfate - APSSTase adenosine 5-phosphosulfate sulfotransferase - BSA Bovine serum albumine - DTE dithioerythritol - OAS O-acetyl-L-serine - OASSase O-acetyl-L-serine sulfhydrylase - POPOP 1,4-bis-(5-phenyl-2-oxazolyl)-benzene - PPO 2,5-diphenyloxazole This is no. 9 in the series Regulation of Sulfate Assimilation in Plants  相似文献   

12.
(1) The electron transport system of heterotrophically dark-grown Rhodobacter capsulatus was investigated using the wild-type strain MT1131 and the phototrophic non-competent (Ps-) mutant MT-GS18 carrying deletions of the genes for cytochrome c 1 and b of the bc 1 complex and for cytochrome c 2. (2) Spectroscopic and thermodynamic data demonstrate that deletion of both bc 1 complex and cyt. c 2 still leaves several haems of c- and b-type with Em7.0 of +265 mV and +354 mV at 551–542 nm, and +415 mV and +275 mV at 561–575 nm, respectively. (3) Analysis of the oxidoreduction kinetic patterns of cytochromes indicated that cyt. b 415 and cyt. b 275 are reduced by either ascorbate-diaminodurene or NADH, respectively. (4) Growth on different carbon and nitrogen sources revealed that the membrane-bound electron transport chain of both MT1131 and MT-GS18 strains undergoes functional modifications in response to the composition of the growth medium used. (5) Excitation of membrane fragments from cells grown in malate minimal medium by a train of single turnover flashes of light led to a rapid oxidation of 32% of the membrane-bound c-type haem complement. Conversely, membranes prepared from peptone/yeast extract grown cells did not show cyt. c photooxidation. These results are discussed within the framework of an electron transport chain in which alternative pathways bypassing both the cyt. c 2 and bc 1 complex might involve high-potential membrane bound haems of b- and c-type.Abbreviations AA antimycin A - CCCP carbonylcyanide m-chlorophenyl hydrazone - CN- cyanide - DAD diaminodurene - Q2H2 ubiquinol-2 - Q-pool ubiquinone-10 pool - RC photochemical reaction center  相似文献   

13.
During chloroplast development in the primary leaves of Phaseolus vulgaris, the extractable activity of adenosine 5-phosphosulfate sulfotransferase increased ten-fold. When chloroplast development took place in air enriched with 3.5 l H2S·l-1 there was a decrease in adenosine 5-phosphosulfate sulfotransferase activity. Cyst(e)ine in concentrations up to 1 mM (in the external medium) did not affect the increase in adenosine 5-phosphosulfate sulfotransferase activity in intact plants. In plants with excised roots, 0.75 mM cyst(e)ine inhibited this increase. In green primary leaves, H2S or cyst(e)ine treatment resulted in a decrease of extractable adenosine 5-phosphosulfate sulfotransferase activity. In intact plants, this effect of cyst(e)ine was observed at a concentration of 1 mM, and in plants with excised roots, 0.25 mM had a comparable effect.In developing plants, the extractable activities of O-acetyl-L-serine sulfhydrylase (EC 4.2.99.9) and ribulosebisphosphate carboxylase (EC 4.1.1.39.) were not affected by H2S or cyst(e)ine.Abbreviations APS adenosine 5-phosphosulfate - APSSTase adenosine 5phosphosulfate sulfotransferase - BSA bovine serum albumin - DTE dithioerythritol - EDTA ethylenediaminetetra-acetic acid - OASSase O-acetyl-L-serine sulfhydrylase - PAPS adenosine 3-phosphate 5-phosphosulfate - POPOP 1,4 Di 2-(5-phenyloxazolyl)-benzene - PPO 2,5-diphenyloxazol - RubP ribulose-bisphosphate - RubPCase ribulosebiphosphate carboxylase This is no. 8 in the series Regulation of Sulfate Assimilation in Plants. The term cysteine is used when it is clear that cystine is not involved; cyst(e)ine is used for an undefined mixture of cysteine and cystine. The concentrations are expressed in all cases relative to cysteine  相似文献   

14.
An efficient method of reduction of 3-azido-3-deoxythymidine and its 5-protected derivatives to 3-aminothymidine derivatives on a palladium catalyst using ammonium formate as a source of hydrogen was suggested.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 2, 2005, pp. 147–150.Original Russian Text Copyright © 2005 by Seregin, Chudinov, Yurkevich, Shvets.  相似文献   

15.
Flavocytochrome c-553 of the non-thiosulfateutilizing green sulfur bacterium Chlorobium limicola strain 6330 was partially purified by ion exchange column chromatography and ammonium sulfate fractionation (highest purity index obtained: A 280/A 417 red=0.96). It is autoxidizable and located in the soluble fraction. This hemoprotein contains a flavin component and one heme per molecule. The dithionite reduced spectrum reveals the typical maxima of a c-type cytochrome: =553,5 nm; =523 nm; =417 nm, while the oxidized form shows a -band at 410 nm and two shoulders at 440 nm and 480 nm indicating the flavin component. The flavocytochrome is a basic protein with an isoelectric point at pH 9.0 (± 0.5), a redox potential of 65 mV, a molecular weight of 56,000. It participates in sulfide oxidation and shows neither adenylylsulfate reductase nor sulfite reductase activity. C. limicola further contains a soluble cytochrome c-555 (highest purity index obtained: A 280/A 412 ox=0.13; isoelectric point between pH 9.5 and 10) and the non-heme iron-containing proteins rubredoxin and ferredoxin, but lacks cytochrome c-551. Besides these soluble electron transfer proteins a membrane-bound c-type cytochrome (=554,5 nm) can be detected spectrophotometrically.Non-common abbreviations HIPIP high-potential iron sulfur protein - APS adenylylsulfate  相似文献   

16.
Summary Plasmodesmata are complex channels within the plant cell wall, which create plasma membrane and symplastic continuity between neighbouring cells. To detect plasmodesmata in cell wall preparations fromNicotiana cle elandii, we have used 3,3-dihexyl-oxacarbocyanine iodide (DiOC6), a cationic amphiphilic fluorescent probe, widely employed for general studies of membrane structure and dynamics. Punctate fluorescent staining was readily seen in pit fields, small depressions within the cell wall known to be rich in plasmodesmata. Scanning electron microscopy was used to demonstrate that the punctate staining corresponded to plasmodesmata. Treatment of cell wall fragments with chloroform-methanol to remove lipids did not alter the staining of plasmodesmata. In contrast, pronase E-sodium dodecyl sulfate treatment completely abolished staining, indicating that the DiOC6 labelling of plasmodesmata may be protein rather than lipid specific. Although not membrane mediated, DiOC6 staining of plasmodesmata is a simple, rapid, and specific tool for the detection of plasmodesmata in isolated cell walls and will prove useful for studies of plasmodesmal location, structure, and composition.  相似文献   

17.
Summary 2-Amino-2-deoxyuridine reacts efficiently with nucleoside 5-phosphorimidazolides in aqueous solution. The dinucleoside monophosphate analogues were obtained in yields exceeding 80% under conditions in which little reaction occurs with the natural nucleosides.In a similar way, the 5-phosphorimidazolide of 2-amino-2-deoxyuridine undergoes self-condensation in aqueous solution to give a complex mixture of oligomers.The phosphoramidate bond in the dinucleoside monophosphate analogues is stable for several days at room temperature and pH 7. The mechanisms of their hydrolysis under acidic and alkaline conditions are described.Abbreviations A adenosine - C cytidine - G guanosine - U uridine - T thymidine - UN 3 2-azido-2-deoxyuridine - UNH 2 2-amino-2-deoxyuridine - ImpA adenosine 5-phosphorimidazolide - ImpU uridine 5-phosphorimidazolide - ImpUN 3 2-azido-2-deoxyuridine 5-phosphorimidazolide - ImpUNH 2 2-amino-2-deoxyuridine 5-phosphorimidazolide - pA adenosine 5-phosphate - pU uridine 5-phosphate - pUN 3 2-azido-2-deoxyuridine 5-phosphate - pUNH 2 2-amino-2-deoxyuridine 5-phosphate - UpA uridylyl-[35]-adenosine - UpU uridylyl-[35]-uridine - UNpA adenylyl-[52]-2-amino-2-deoxy-uridine - UNpU uridylyl-[52]-2-amino-2-deoxyuridine (pUN)n n=2,3,4 [25]-linked oligomers of pUNH 2 poly(A) polyadenylic acid - Im imidazole - MeIm l-methylimidazole  相似文献   

18.
H. Urlaub  G. Jankowski 《Planta》1982,155(2):154-161
Cell homogenates from Catharanthus roseus (L.) G. Don. grown S-autotrophically on sulfate in the dark are capable of reducing adenylysulfate (APS) to cysteine. This reduction required a particulate protein fraction from the cell extract and reduced ferredoxin as the electron donor. The protein fraction (MW 700,000±50,000) was found to contain Fd:NADP+ reductase, glutathione reductase and an unspecific dithiol reductase, and APS-sulfotransferase and thiosulfonate reductase activity. Resolution into these individual enzyme activities led to a non-restorable loss of the APS reducing activity. It was observed that a slow gradual decay of the APS reducing activity was accompanied by a likewise slow generation of a ferredoxin-dependent sulfite reductase.Enzymes and abbreviations APS Adenosine 5-phosphosulfate - APS-kinase E.C.2.7.1.25 - ATP-sulfurylase E.C.2.7.7.4 - Fd ferredoxin - Fd-NADP+-reductase E.C.1.6.7.1. - Glutathione reductase E.C.1.6.4.2. - G6P Glucose 6-phosphate - G6PDH glucose 6-phosphate dehydrogenase, E.C.1.1.49 - GSSG oxidized glutathione - GSSO3H S-sulfoglutathione - MVH reduced methylviologen - OASS O-acetylserine sulfhydrylase-E.C. 4.2.99.8 - Sulfite reductase E.C.1.8.1.2  相似文献   

19.
Summary A series of azaproline dipeptides with various N-substituents were synthesized as possible active-site-directed inhibitors of two proline-specific serine proteases, dipeptidyl peptidase IV and prolyl oligopeptidase. Compounds with semicarbazide, carbazate, acylhydrazine and sulphonylhydrazine structures were tested. Some compounds show moderate activity, i.e., in the millimolar range.  相似文献   

20.
Enzymatic O-methylation of plant secondary metabolites is an important mechanism for the inactivation of reactive hydroxyl groups and for the modification of their solubility. A cDNA clone (pFOMT3) encoding the gene for the 3/5-O-methylation of partially methylated flavonols was isolated from Chrysosplenium americanum (Saxifragaceae). We used a PCR fragment obtained with degenerate oligonucleotides designed from conserved regions of various O-methyltransferases (OMTs). The pFOMT3 cDNA sequence shows about 67–85% similarity to other plant OMT sequences. The recombinant protein expresses strict specificity for positions 3/5 (meta) of partially methylated flavonols, but does not accept quercetin or caffeic acid for further methylation. Southern blot analysis of the genomic DNA probed with an OMT sequence suggests the presence of a number of related genes in this species, consistent with the multiple enzymatic methylations involved in the biosynthesis of polymethylated flavonols in this plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号