首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A collagen-like peptide with the sequence (GER)(15) GPCCG was synthesized to study the formation of a triple helix in the absence of proline residues. This peptide can form a triple helix at acidic and basic pH, but is insoluble around neutral pH. The formation of a triple helix can be used to covalently oxidize the cysteine residues into a disulfide knot. Three disulfide bonds are formed between the three chains as has been found at the carboxyl-terminal end of the type III collagen triple helix. This is a new method to covalently link collagen-like peptides with a stereochemistry that occurs in nature. The peptide undergoes a reversible, cooperative triple helix coil transition with a transition midpoint (T(m)) of 17 to 20 degrees C at acidic pH and 32 to 37 degrees C at basic pH. At acidic pH there was little influence of the T(m) on the salt concentration of the buffer. At basic pH increasing the salt concentration reduced the T(m) to values comparable to the stability at acidic pH. These experiments show that the tripeptide unit GER which occurs frequently in collagen sequences can form a triple helical structure in the absence of more typical collagen-like tripeptide units and that charge-charge interactions play a role in the stabilization of the triple helix of this peptide.  相似文献   

2.
The early stages of heat induced aggregation at 67.5 degrees C of beta-lactoglobulin were studied by combined static light scattering and size exclusion chromatography. At all conditions studied (pH 8.7 without salt and pH 6.7 with or without 60 mM NaCl) we observe metastable heat-modified dimers, trimers, and tetramers. These oligomers reach a maximum in concentration at about the time when large aggregates (1000-4000 kg/mol) appear, after which they decline in concentration. By isolating the oligomers it was demonstrated that they rapidly form aggregates upon heating in the absence of monomeric protein, showing that these species are central to the aggregation process. To our knowledge this is the first time that intermediates in protein aggregation have been isolated. At all stages of aggregation the dominant oligomer was the heat-modified dimer. Whereas the heat-modified oligomers are formed at a higher rate at pH 8.7 than at pH 6.7, the opposite is the case for the formation of aggregates from the metastable oligomers indicating cross-linking via disulfide bridges for the oligomers and noncovalent interaction in the formation of the aggregates. The data suggest that an aggregate nucleus is formed from four oligomers. For protein concentrations of 10 or 20 g/l a heat-modified monomer can be observed until about the time when the maximum in concentration appears of the heat-modified dimer. The disappearance of this heat-modified monomer correlates to the formation of dimers (trimers and tetramers).  相似文献   

3.
The role of the free sulfhydryl group of beta-lactoglobulin in the formation of a stable non-native monomer during heat-treatment of beta-lactoglobulin solutions was investigated. Two concomitant events occurred at the earlier stage of heating: unfolding of native globular monomer and intramolecular sulfhydryl/disulfide exchange reaction. Thus, two denatured monomeric species were formed: a non-native monomer with exposed Cys-121 (Mcys121) which became reversible after cooling, and a stable non-native monomer with exposed Cys-119 (Mcys119) which exhibited both a larger hydrodynamic conformation than native monomer and low solubility at pH 4.7. The results also show that the formation of these monomeric species throughout heat-induced denaturation of native beta-lg monomers is faster than their subsequent aggregation. A mechanism describing the behavior of beta-lg denaturation/aggregation during heat-treatment under selected conditions (5.8 mg/ml, low ionic strength, pH 6.6, 85 degrees C) is presented.  相似文献   

4.
Conformational transitions and functional stability of the bile salt hydrolase (BSH; cholylglycine EC: 3.5.1.24) from Bifidobacterium longum (BlBSH) cloned and expressed in E. coli were studied under thermal, chemical and pH-mediated denaturation conditions using fluorescence and CD spectroscopy. Thermal and Gdn-HCl-mediated denaturation of BlBSH is a multistep process of inactivation and unfolding. The inactivation and unfolding of the enzyme was found to be irreversible. Enzyme activity seems sensitive to even minor conformational changes at the active site. Thermal denaturation as such did not result in any insoluble protein aggregates. However, on treating with 0.25 - 1 M Gdn-HCl the enzyme showed increasing aggregation at temperatures of 40 - 55 degrees C indicating more complex structural changes taking place in the presence of chemical denaturants. The enzyme secondary structure was still intact at acidic pH (pH 1 - 3). The perturbation in the tertiary structure at the acidic pH was detected through freshly formed solvent exposed hydrophobic patches on the enzyme. These changes could be due to the formation of an acid-induced molten globule-like state.  相似文献   

5.
Misfolding and amyloid formation of transthyretin (TTR) is implicated in numerous degenerative diseases. TTR misfolding is greatly accelerated under acidic conditions, and thus most of the mechanistic studies of TTR amyloid formation have been conducted at various acidic pH values (2–5). In this study, we report the effect of pH on TTR misfolding pathways and amyloid structures. Our combined solution and solid-state NMR studies revealed that TTR amyloid formation can proceed via at least two distinct misfolding pathways depending on the acidic conditions. Under mildly acidic conditions (pH 4.4), tetrameric native TTR appears to dissociate to monomers that maintain most of the native-like β-sheet structures. The amyloidogenic protein undergoes a conformational transition to largely unfolded states at more acidic conditions (pH 2.4), leading to amyloid with distinct molecular structures. Aggregation kinetics is also highly dependent upon the acidic conditions. TTR quickly forms moderately ordered amyloids at pH 4.4, while the aggregation kinetics is dramatically reduced at a lower pH of 2.4. The effect of the pathogenic mutations on aggregation kinetics is also markedly different under the two different acidic conditions. Pathogenic TTR variants (V30M and L55P) aggregate more aggressively than WT TTR at pH 4.4. In contrast, the single-point mutations do not affect the aggregation kinetics at the more acidic condition of pH 2.4. Given that the pathogenic mutations lead to more aggressive forms of TTR amyloidoses, the mildly acidic condition might be more suitable for mechanistic studies of TTR misfolding and aggregation.  相似文献   

6.
The principles governing the in vitro solubility of the common natural conjugated and unconjugated bile acids and salts in relation to pH, micelle formation, and Ca2+ concentration are considered from a theoretical standpoint and then correlated first with experimental observations on model systems and second with the formation of precipitates containing bile acids in health and disease. In vitro, taurine-conjugated bile acids are soluble at strongly acidic pH; glycine-conjugated bile acids are poorly soluble at moderately acidic pH; and many of the common, natural unconjugated bile acids are insoluble at neutral pH. For both glycine-conjugated and unconjugated bile acids, solubility rises exponentially, with increasing pH, until the concentration of the anion reaches the critical micellization concentration (CMC) when micelle formation occurs and solubility becomes practically unlimited. In vivo, in health, conjugated bile acids are present in micellar form in the biliary and intestinal tract. Unconjugated bile acids formed in the large intestine remain at low monomeric concentrations because of the acidic pH of the proximal colon, binding to bacteria, and absorption across the intestinal mucosa. In diseases in which proximal small intestinal content is abnormally acidic, precipitation of glycine-conjugated bile acids (in protonated form) occurs. Increased bacterial formation of unconjugated bile acids occurs with stasis in the biliary tract and small intestine; in the intestine, unconjugated bile acids precipitate in the protonated form. If the precipitates aggregate, an enterolith may be formed. In vitro, the calcium salts of taurine conjugates are highly water soluble, whereas the calcium salts of glycine conjugates and unconjugated bile acids possess limited aqueous solubility that is strongly influenced by bile acid structure. Precipitation occurs extremely slowly from supersaturated solutions of glycine-conjugated bile acids because of metastability, whereas super-saturated solutions of unconjugated bile acids rapidly form precipitates of the calcium salt. In systems containing Ca2+ ions and unconjugated bile acids, pH is important, since it is the key determinant of the anion concentration. For bile acids with relatively soluble calcium salts (or with a low CMC), the concentration of the anion will reach the CMC and micelles will form, thus precluding formation of the insoluble calcium salt. For bile acids, with relatively insoluble calcium salts (or with a high CMC), the effect of increasing pH is to cause the anion to reach the solubility product of the calcium salt before reaching the CMC so that precipitation of the calcium salt occurs instead of micelle formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Alpha-synuclein is the major component of Lewy bodies and Lewy neurites, which are granular and filamentous protein inclusions that are the defining pathological features of several neurodegenerative conditions such as Parkinson's disease. Fibrillar aggregates formed from alpha-synuclein in vitro resemble brain-derived material, but the role of such aggregates in the etiology of Parkinson's disease and their relation to the toxic molecular species remain unclear. In this study, we investigated the effects of pH and salt concentration on the in vitro assembly of human wild-type alpha-synuclein, particularly with regard to aggregation rate and aggregate morphology. Aggregates formed at pH 7.0 and pH 6.0 in the absence of NaCl and MgCl(2) were fibrillar; the pH 6.0 fibrils displayed a helical twist, as clearly evident by scanning force and electron microscopy. Incubations at pH 7.0 remained transparent during the process of aggregation and exhibited strong thioflavin-T and weak 8-anilino-1-naphthalenesulfonate (ANS) binding; furthermore, they were efficient in seeding fibrillization of fresh solutions. In contrast, incubating alpha-synuclein at low pH (pH 4.0 or pH 5.0) resulted in the rapid formation of turbid suspensions characterized by strong ANS binding, reduced thioflavin-T binding and reduced seeding efficiency. At pH 4.0, fibril formation was abrogated; instead, very large aggregates (dimensions approximately 100 microm) of amorphous appearance were visible by light microscopy. As with acidic conditions, addition of 0.2M NaCl or 10mM MgCl(2) to pH 7.0 incubations led to a shorter aggregation lag time and formation of large, amorphous aggregates. These results demonstrate that the morphology of alpha-synuclein aggregates is highly sensitive to solution conditions, implying that the fibrillar state does not necessarily represent the predominant or most functionally significant aggregated state under physiological conditions.  相似文献   

8.
We demonstrate that bovine core histones are natively unfolded proteins in solutions with low ionic strength due to their high net positive charge at pH 7.5. Using a variety of biophysical techniques we characterized their conformation as a function of pH and ionic strength, as well as correlating the conformation with aggregation and amyloid fibril formation. Tertiary structure was absent under all conditions except at pH 7.5 and high ionic strength. The addition of trifluoroethanol or high ionic strength induced significant alpha-helical secondary structure at pH 7.5. At low pH and high salt concentration, small-angle X-ray scattering and SEC HPLC indicate the histones are present as a hexadecamer of globular subunits. The secondary structure at low pH was independent of the ionic strength or presence of TFE, as judged by FTIR. The data indicate that histones are able to adopt five different relatively stable conformations; this conformational variability probably reflects, in part, their intrinsically disordered structure. Under most of the conditions studied the histones formed amyloid fibrils with typical morphology as seen by electron microscopy. In contrast to most aggregation/amyloidogenic systems, the kinetics of fibrillation showed an inverse dependence on histone concentration; we attribute this to partitioning to a faster pathway leading to non-fibrillar self-associated aggregates at higher protein concentrations. The rate of fibril formation was maximal at low pH, and decreased to zero by pH 10. The kinetics of fibrillation were very dependent on the ionic strength, increasing with increasing salt concentration, and showing marked dependence on the nature of the ions; interestingly Gdn.HCl increased the rate of fibrillation, although much less than NaCl. Different ions also differentially affected the rate of nucleation and the rate of fibril elongation.  相似文献   

9.
Deficiency in insulin secretion and function that characterize type 2 diabetes often requires administration of extraneous insulin, leading to injection‐site amyloidosis. Insulin aggregation at neutral pH is not well understood. Although oligomer formation is believed to play an important role, insulin oligomers have not been fully characterized yet. Here, we elucidate similarities and differences between in vitro insulin aggregation at acidic and neutral pH for a range of insulin concentrations (2.5–100 μM) by using kinetic thioflavin T fluorescence, circular dichroism, atomic force and electron microscopy imaging. Importantly, we characterize the size distribution of insulin oligomers at different assembly stages by the application of covalent cross‐linking and gel electrophoresis. Our results show that at the earliest assembly stage, oligomers comprise up to 40% and 70% of soluble insulin at acidic and neutral pH, respectively. While the highest oligomer order increases with insulin concentration at acidic pH, the opposite tendency is observed at neutral pH, where oligomers up to heptamers are formed in 10 μM insulin. These findings suggest that oligomers may be on‐ and off‐pathway assemblies for insulin at acidic and neutral pH, respectively. Agitation, which is required to induce insulin aggregation at neutral pH, is shown to increase fibril formation rate and fibrillar mass both by an order of magnitude. Insulin incubated under agitated conditions at neutral pH rapidly aggregates into large micrometer‐sized aggregates, which may be of physiological relevance and provides insight into injection‐site amyloidosis and toxic pulmonary aggregates induced by administration of extraneous insulin.  相似文献   

10.
The aggregation of two negatively-charged polypeptides, poly-L-glutamic acid (PE) and a copolymer of poly-glutamic acid and poly-alanine (PEA), has been studied at different peptide and salt concentrations and solution pH conditions. The kinetics of aggregation were based on Thioflavin T (ThT) fluorescence measurements. The observed lag phase shortened and the aggregation was faster as the pH approached the polypeptides' isoelectric points. While the initial polypeptide structures of PE and PEA appeared identical as determined from circular dichroism spectroscopy, the final aggregate morphology differed; PE assumed large twisted lamellar structures and the PEA formed typical amyloid-like fibrils, although both contained extensive beta-sheet structure. Differences in aggregation behavior were observed for the two polypeptides as a function of salt concentration; aggregation progressed more slowly for PE and more quickly for PEA with increasing salt concentration. Several models of aggregation kinetics were fit to the data. No model yielded consistent rate constants or a critical nucleus size. A modified nucleated polymerization model was developed based on that of Powers and Powers [E.T. Powers, D.L. Powers, The kinetics of nucleated polymerizations at high concentrations: Amyloid fibril formation near and above the "supercritical concentration", Biophys. J. 91 (2006) 122-132], which incorporated the ability of oligomeric species to interact. This provided a best fit to the experimental data.  相似文献   

11.
The packing of lipopolysaccharide aggregates from rough strains of Escherichia coli was examined at different pH values. Lipopolysaccharide head-group motion, measured with an electron spin resonance probe, was found to be dependent on pH, and indicated the existence of multiple ionizable groups. Lipopolysaccharide from a rough (Ra) and a heptose-less (Re) mutant were more rigid at pH 5 than at pH 10.5. In addition, head-group mobility of the magnesium salt of Ra lipopolysaccharide was substantially less than that of the sodium salt at pH 7.0, whereas at high pH (pH 12) the two salts were equally fluid. Changes in head-group packing were also reflected in pH-dependent changes in the phase transition measured with differential scanning calorimetry. The enthalpy of the transition, delta Ht, for the sodium salt of Re lipopolysaccharide was greatest at pH 7.5 and approached zero in both the acidic and the basic pH ranges. We propose that fixed charges in the core and lipid A regions significantly influence lipopolysaccharide head-group motion and the lipopolysaccharide aggregation state. Furthermore, ionic bridging among phosphate groups dramatically rigidifies head group interactions in the neutral to acidic pH ranges.  相似文献   

12.
HBsAg作为乙肝疫苗的主要成分,是一种病毒样颗粒,由蛋白质和脂类通过非共价键作用形成。HBsAg保持完整结构对其功能非常重要,而目前未见对其在溶液中结构变化的研究。考察了不同溶剂环境(温度、pH值、离子类型和盐浓度)对HBsAg结构的影响。实验发现,HBsAg在常温下比较稳定,但在温度超过60℃时稳定性明显下降;pH值小于4.0时引起不可逆聚集,但在pH5.0时的聚集部分可逆;不同离子对HBsAg的影响基本符合Hofmeister序列,不同之处是SO42-比F-更易引起HBsAg颗粒的聚集,在所考察的盐中,(NH4)2SO4对HBsAg有着较大的影响,0.4mol/L时就会引起HBsAg聚集,随着浓度增加,聚集现象更加严重,所以在HBsAg的疏水层析中要谨慎使用(NH4)2SO4。  相似文献   

13.
The [2Fe–2S] ferredoxin from the extreme haloarchaeon Halobacterium salinarum is stable in high (>1.5 M) salt concentration. At low salt concentration the protein exhibits partial unfolding. The kinetics of unfolding was studied in low salt and in presence of urea in order to investigate the role of salt ions on the stability of the protein. The urea dependent unfolding, monitored by fluorescence of the tryptophan residues and circular dichroism, suggests that the native protein is stable at neutral pH, is destabilized in both acidic and alkaline environment, and involves the formation of kinetic intermediate(s). In contrast, the unfolding kinetics in low salt exhibits enhanced rate of unfolding with increase in pH value and is a two state process without the formation of intermediate. The unfolding at neutral pH is salt concentration dependent and occurs in two stages. The first stage, involves an initial fast phase (indicative of the formation of a hydrophobic collapsed state) followed by a relatively slow phase, and is dependent on the type of cation and anion. The second stage is considerably slower, proceeds with an increase in fluorescence intensity and is largely independent of the nature of salt. Our results thus show that the native form of the haloarchaeal ferredoxin (in high salt concentration) unfolds in low salt concentration through an apparently hydrophobic collapsed form, which leads to a kinetic intermediate. This intermediate then unfolds further to the low salt form of the protein.  相似文献   

14.
F M Chen 《Biochemistry》1984,23(25):6159-6165
Comparative studies on the salt titration and the related kinetics for poly(dG-dC) X poly(dG-dC) in pH 7.0 and 3.8 solutions clearly suggest that base protonation facilitates the kinetics of B-Z interconversion although the midpoint for such a transition in acidic solution (2.0-2.1 M NaCl) is only slightly lower than that of neutral pH. The rates for the salt-induced B to Z and the reverse actinomycin D induced Z to B transitions in pH 3.8 solutions are at least 1 order of magnitude faster than the corresponding pH 7.0 counterparts. The lowering of the B-Z transition barrier is most likely the consequence of duplex destabilization due to protonation as indicated by a striking decrease (approximately 40 degrees C) in melting temperature upon H+ binding in low salt. The thermal denaturation curve for poly(dG-dC) X poly(dG-dC) in a pH 3.8, 2.6 M NaCl solution indicates an extremely cooperative melting at 60.5 degrees C for protonated Z DNA, which is immediately followed by aggregate formation and subsequent hydrolysis to nucleotides at higher temperatures. The corresponding protonated B-form poly(dG-dC) X poly(dG-dC) in 1 M NaCl solution exhibits a melting temperature about 15 degrees C higher, suggesting further duplex destabilization upon Z formation.  相似文献   

15.
The inactivation kinetics of penicillin acylase from Escherichia coli have been investigated over a wide pH range at 25 and 50 degrees C. The enzyme was very stable in neutral solutions and quickly lost its catalytic activity in acidic and alkaline solutions. In all cases, the inactivation proceeded according to first order reaction kinetics. Analysis of the pH dependence of enzyme stability provides evidence that stable penicillin acylase conformation is maintained by salt bridges. Destruction of the salt bridges due to protonation/deprotonation of the amino acid residues forming these ion pairs causes inactivation by formation of the unstable "acidic" EH(4)(3+), EH(3)(2+), EH(2)(+) and "alkaline" E(-) enzyme forms. At temperatures above 35 degrees C penicillin acylase apparently undergoes a conformational change that is accompanied by destruction of one of these salt bridges and change in the catalytic properties.  相似文献   

16.
The packing of lipopolysaccharide aggregates from rough strains of Escherichia coli was examined at different pH values. Lipopolysaccharide head-group motion, measured with an electron spin resonance probe, was found to be dependent on pH, and indicated the existence of multiple ionizable groups. Lipopolysaccharide from a rough (Ra) and a heptose-less (Re) mutant were more rigid at pH 5 than at pH 10.5. In addition, head-group mobility of the magnesium salt of Ra lipopolysaccharide was substantially less than that of the sodium salt at pH 7.0, whereas at high pH (pH 12) the two salts were equally fluid. Changes in head-group packing were also reflected in pH-dependent changes in the phase transition measured with differential scanning calorimetry. The enthalpy of the transition, ΔHt, for the sodium salt of Re lipopolysaccharide was greatest at pH 7.5 and approached zero in both the acidic and the basic pH ranges. We propose that fixed charges in the core and lipid A regions significantly influence lipopolysaccharide head-group motion and the lipopolysaccharide aggregation state. Furthermore, ionic bridging among phosphate groups dramatically rigidifies head group interactions in the neutral to acidic pH ranges.  相似文献   

17.
Intraerythrocytic plasmodia form hemozoin as a detoxification product of hemoglobin-derived heme. An identical substance, beta-hematin (BH), can be obtained in vitro from hematin at acidic pH. Quinoline-antimalarials inhibit BH formation. Standardization of test conditions is essential for studying the interaction of compounds with this process and screening potential inhibitors. A spectrophotometric microassay of heme polymerization inhibitory activity (HPIA) (Basilico et al., Journal of Antimicrobial Chemotherapy 42, 55-60, 1998) previously reported was used to investigate the effect of pH and salt concentration on BH formation. The yield of BH formation decreased with pH. Moreover, under conditions used in the above HPIA assay (18 h, 37 degrees C, pH = 2.7), several salts including chloride and phosphate inhibited the process. Aminoquinoline drugs formulated as salts (chloroquine-phosphate, primaquine-diphosphate), but not chloroquine-base, also inhibited the reaction. Interference by salts was highest at low pH and decreased at higher pH (pH 4). Here, we describe different assay conditions that eliminate these problems (BHIA, beta-hematin inhibitory activity). By replacing hematin with hemin as the porphyrin and NaOH solution with DMSO as solvent, the formation of BH was independent of pH up to pH 5.1. No interference by salts was observed over the pH range 2.7-5.1. Dose-dependent inhibition of BH formation was obtained with chloroquine-base, chloroquine-phosphate, and chloroquine-sulfate at pH 5.1. Primaquine was not inhibitory. The final product, characterized by solubility in DMSO, consists of pure BH by FT-IR spectroscopy. The BHIA assay (hemin in DMSO, acetate buffer pH 5 +/- 0.1, 18 h at 37 degrees C) is designed to screen for those molecules forming pi-pi interactions with hematin and thus inhibiting beta-hematin formation.  相似文献   

18.
The renaturation yield of the denatured firefly luciferase decreased strongly with increasing protein concentration in a renaturation buffer, because of aggregation. In this study, firefly luciferase was immobilized on agarose beads at a high concentration. Although the protein concentration was extremely high (about 100-fold) compared to that of soluble luciferase, the renaturation yield was comparable with that for the soluble one. Thus, immobilization was shown to be effective for avoiding aggregation of firefly luciferase. It was also shown that the optimum buffer conditions for renaturation of the immobilized luciferase were the same as those for the renaturation in solution. Also, it was indicated that electrostatic interactions between a protein and the matrix have a negative effect on renaturation of the immobilized luciferase since the renaturation yield decreased at acidic pH only for the immobilized luciferase. These novel observations are described in detail in this paper.  相似文献   

19.
The transforming growth factors-beta (TGF-beta) are important regulatory peptides for cell growth and differentiation with therapeutic potential for wound healing. Among the several TGF-beta isoforms TGF-beta3 has a particularly low solubility at physiological pH and easily forms aggregates. A spectroscopic structural analysis of TGF-beta3 in solution has thus been difficult. In this study, circular dichroism spectroscopy was used to determine the secondary structural elements of TGF-beta3. In addition, the aggregation of TGF-beta3 was investigated systematically as a function of pH and salt concentration using a rapid screening method. Sedimentation equilibrium and sedimentation velocity analysis revealed that TGF-beta3 exists predominantly in two major forms: (i) monomers in solution at low pH and (ii) large precipitating aggregates at physiological pH. Under acidic conditions (pH < 3.8) the protein was not aggregated. At pH approximately 3.9, a monomer right arrow over left arrow dimer equilibrium could be detected that transformed into larger aggregates at pH > 4.1. Aggregation was pronounced in the pH range of 4.3 < pH < 9.8 with the aggregation maximum between pH 6.5 and 8. 5. The aggregation process was accompanied by a structural change of the protein. The CD spectra were characterized by an isodichroic point at 209.5 nm indicating a two-state equilibrium between TGF-beta3 dissolved in solution and aggregated TGF-beta3. Aggregated TGF-beta3 showed a higher beta-sheet content and lower beta-turn and random coil contributions compared with monomeric TGF-beta3. Both the solution structure and the aggregate structure of TGF-beta3 were different from the crystal structure. This was in contrast to TGF-beta2, which showed very similar crystal and solution structures. Under alkaline conditions (pH > 9.8) the turbidity disappeared and a further conformational change was induced. The pH dependence of the TGF-beta3 conformation in solution in the range of 2.3 < pH < 11. 0 was reversible. Aggregation of TGF-beta3 was, furthermore, influenced by the presence of salt. For pH > 3.8 the addition of salt greatly enhanced the tendency to aggregate, even in the very basic domain. Under physiological conditions (pH 7.4, cNaCl = 164 mM) TGF-beta3 has almost the highest tendency to aggregate and will remain in solution only at nanomolar concentrations.  相似文献   

20.
In the previous study (part I), heat-denatured RNase A aggregation was shown to depend on the solution pH. Interestingly, at pH 3.0, the protein did not aggregate even when exposed to 75 degrees C for 24 h. In this study, electrostatic repulsion was shown to be responsible for the absence of aggregates at that pH. While RNase A aggregation was prevented at the extremely acidic pH, this is not an environment conducive to maintaining protein function in general. Therefore, attempts were made to confer electrostatic repulsion near neutral pH. In this study, heat-denatured RNase A was mixed with charged polymers at pH 7.8 in an attempt to provide the protein with excess surface cations or anions. At 75 degrees C, SDS and dextran sulfate were successful in preventing RNase A aggregation, whereas their cationic, nonionic, and zwitterionic analogs did not do so. We believe that the SO3- groups present in both additives transformed the protein into polyanionic species, and this may have provided a sufficient level of electrostatic repulsion at pH 7.8 and 75 degrees C to prevent aggregation from proceeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号