首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The relationship between glycolysis and respiration was examined in a model of pancreatic B-cell dysfunction, namely in tumoral insulin-producing cells of the RINm5F line. A rise in D-glucose concentration from 2.8 to 16.7 mM increased the utilization of D-[5-3H]glucose and production of [14C]lactate from D-[U-14C]glucose, whereas decreasing the oxidation of either D-[U-14C]glucose or D-[6-14C]glucose. Whereas 2.8 mM D-glucose augmented O2 uptake above basal value, a further rise in D-glucose concentration to 16.7 mM decreased respiration, which remained higher, however, than basal value. Whether at low or high concentration, D-glucose exerted a pronounced sparing action upon the oxidation of endogenous nutrients in cells prelabeled with either L-[U-14C]glutamine or [14C]palmitate and, nevertheless, augmented above basal value the rate of lipogenesis, ATP/ADP content, adenylate charge, and cytosolic NADH/NAD+ and NADPH/NADP+ ratios. The generation of ATP resulting from the catabolism of either exogenous D-glucose or endogenous nutrients was not affected by the rise in hexose concentration from 2.8 to 16.7 mM. Thus, in sharp contrast with the situation found in normal islet cells, a rise in D-glucose concentration, instead of stimulating mitochondrial oxidative events, caused, through a Crabtree effect, inhibition of hexose oxidation and O2 consumption in tumoral islet cells.  相似文献   

2.
Sener  A.  Scruel  O.  Louchami  K.  Jijakli  H.  Malaisse  W.J. 《Molecular and cellular biochemistry》1999,194(1-2):133-145
The analog of D-glucose, 3-O-methyl-D-glucose, is thought to delay the equilibration of D-glucose concentration across the plasma membrane of pancreatic islet B-cells, but not to exert any marked inhibitory action upon the late phase of glucose-stimulated insulin release. In this study, however, 3-O-methyl-D-glucose, when tested in high concentrations (30-80 mM) was found to cause a rapid, sustained and not rapidly reversible inhibition of glucose-induced insulin release in rat pancreatic islets. In relative terms, the inhibitory action of 3-O-methyl-D-glucose was more marked at low than high concentrations of D-glucose. It could not be attributed to hyperosmolarity and appeared specific for the insulinotropic action of D-glucose, as distinct from non-glucidic nutrient secretagogues. Although 3-O-methyl-D-glucose and D-glucose failed to exert any reciprocal effect upon the steady-state value for the net uptake of these monosaccharides by the islets, the glucose analog inhibited D-[5-3H]glucose utilization and D-[U-14C]glucose oxidation. This coincided with increased 86Rb outflow and decreased 45Ca outflow from prelabelled islets, as well as decreased 45Ca net uptake. A preferential effect of 3-O-methyl-D-glucose upon the first phase of glucose-stimulated insulin release was judged compatible with an altered initial rate of D-glucose entry into islet B-cells. The long-term inhibitory action of the glucose analog upon the metabolic and secretory response to D-glucose, however, may be due, in part at least, to an impaired rate of D-glucose phosphorylation. The phosphorylation of the hexose by beef heart hexokinase and human B-cell glucokinase, as well as by parotid and islet homogenates, was indeed inhibited by 3-O-methyl-D-glucose. The relationship between insulin release and D-glucose utilization or oxidation in the presence of 3-O-methyl-D-glucose was not different from that otherwise observed at increasing concentrations of either D-glucose or D-mannoheptulose. It is concluded, therefore, that 3-O-methyl-D-glucose adversely affects the metabolism and insulinotropic action of D-glucose by a mechanism largely unrelated to changes in the intracellular concentration of the latter hexose.  相似文献   

3.
In human erythrocytes, in which the fractional turnover rate of glucose 6-phosphate is rather low, menadione increases to almost the same relative extent the oxidation of D-[U-14C]glucose and D-[U-14C]galactose. However, in pancreatic tumoral islet cells (RINm5F line), in which the fractional turnover rate of glucose 6-phosphate is considerably higher, menadione increases the oxidation of D-[1-14C]glucose but not that of D-[1-14C]galactose. These results suggest that alpha-D-glucose 6-phosphate generated from exogenous D-galactose is channeled preferentially into the glycolytic rather than pentose phosphate pathway. Such was no more the case, however, when the RINm5F cells were exposed simultaneously to both D-glucose and D-galactose.  相似文献   

4.
A Sener  W J Malaisse 《FEBS letters》1985,193(2):150-152
Rat pancreatic islets and insulin-producing cells of the RINm5F line were incubated for 5 min at 7 or 23 degrees C in media containing 3H2O and either L-[1-14C]glucose or [2-14C]alloxan. In the islets the intracellular distribution space of [2-14C]alloxan represented, at 7 and 23 degrees C respectively, 11.4 +/- 1.0 and 25.5 +/- 2.3% of the intracellular 3H2O space. In the RINm5F cells, the distribution space of [2-14C]alloxan failed to be affected by the ambient temperature and represented, after correction for extracellular contamination, no more than 5.2 +/- 0.5% of the intracellular 3H2O space. Preincubation for 30 min at 7 degrees C in the presence of alloxan (10 mM) failed to affect subsequent D-[U-14C]glucose oxidation in the tumoral cells, whilst causing a 70% inhibition of glucose oxidation in the islets. It is proposed that RINm5F cells are resistant to the cytotoxic action of alloxan, this being attributable, in part at least, to poor uptake of the diabetogenic agent.  相似文献   

5.
A novel insulin-secreting cell line, BRIN-BD11, was recently established following electrofusion of RINm5F cells with NEDH rat pancreatic islet cells. In the present study,d-glucose metabolism was compared in BRIN-BD11 and RINm5F cells. The concentration dependency ofd-[5-3H]glucose utilization displayed a comparable pattern in the two cell lines, but the absolute values were lower in BRIN-BD11 than RINm5F cells. Except in the case ofd-[1-14C]glucose, the ratio between14C labeledd-glucose oxidation andd-[5-3H]glucose utilization was higher, however, in BRIN-BD11 than RINm5F cells. Moreover, BRIN-BD11 cells were less affected than RINm5F cells by a rise ind-glucose concentration, in terms of the inhibitory action of the hexose upon oxidative variables, such as oxidative glycolysis, pyruvate decarboxylation, and oxidation of glucose-derived acetyl residues in the Krebs cycle. The total energy yield fromd-glucose catabolism appeared similar, however, in BRIN-BD11 and RINm5F cells. These findings extend the knowledge that BRIN-BD11 cells display an improved metabolic and secretory behavior, when considering the difference otherwise found between normal and tumoral islet cells.  相似文献   

6.
The rat insulinoma-derived RINm5F cell line retains many differentiated functions of islet beta-cells. However, it fails to recognize glucose as an insulin secretagogue in the physiological concentration range. With this cell line, glucose-transport kinetics were investigated, by using a double-label technique with the non-metabolizable glucose analogue 3-O-methylglucose (OMG). RINm5F cells possess a passive glucose-transport system with high capacity and low affinity. Equilibration across the plasma membrane of extracellular OMG concentrations up to at least 20 mM is achieved within 2 min at 37 degrees C. The half-saturation of OMG uptake occurs at 32 mM. At lower temperatures OMG uptake is markedly retarded, with a temperature coefficient (Q10) of 2.9. As indicated by efflux measurements, transport is symmetrical. Cytochalasin B at micromolar concentrations and phlorrhizin in millimolar concentrations are potent inhibitors of OMG uptake. Neutralization of the secreted insulin with antibodies does not alter OMG uptake kinetics. The glucose metabolism of RINm5F cells is much exaggerated compared with that of islet beta-cells. Nonetheless, when measured in parallel to uptake, transport exceeds by far the rate of metabolism at glucose concentrations above 3 mM. Measurements of intracellular D-glucose reveal a lower intracellular glucose concentration relative to the extracellular in RINm5F cells. This seems to be due to abnormalities in the subsequent steps of glucose metabolism, rather than to abnormalities in hexose uptake. The loss of glucose-induced insulin release in RINm5F cells cannot be explained by alterations in hexose transport.  相似文献   

7.
In rat pancreatic islets, tumoral islet cells (RINm5F line), parotid gland, and in human erythrocytes, but not in rat hepatocytes, the production of 3H2O from D-[2-3H]glucose is 20-30% lower than from D-[5-3H]glucose. This coincides with the production of tritiated lactic acid from D-[2-3H]glucose and may be attributable to an intramolecular hydrogen transfer in the phosphoglucoisomerase reaction. It is concluded that the production of 3H2O from D-[2-3H]glucose is not a reliable tool to assess the total rate of hexose phosphorylation.  相似文献   

8.
The nonmetabolized analogue of L-leucine, 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH), was recently found to inhibit O2 uptake and insulin release from tumoral islet cells of the RINm5F line. BCH inhibited lipogenesis, stimulated lipolysis, and severely decreased the oxidation of endogenous [U-14C]palmitate in prelabelled RINm5F cells. D-Glucose exerted metabolic effects which were sometimes opposite to those caused by BCH and, within limits, protected the islet cells against the inhibitor action of BCH. Since BCH augments NH4+ production and facilitated the catabolism of 14C-labelled amino acids in the prelabelled cells, it is proposed that the unexpected inhibition of O2 uptake by BCH is mainly attributable to a decrease in the oxidation of endogenous fatty acids.  相似文献   

9.
Tumoral pancreatic islet cells of the RINm5F line are equipped with two classes of [3H]cytochalasin B binding sites with respective Kd of 0.4 and 7 microM. The binding of the fungal metabolite and its dissociation from the binding sites display rapid time courses. The binding is inhibited by D-glucose, more than by L-glucose, by phlorizin and by cytochalasin E. These findings are considered in the light of the dual action of cytochalasin B upon hexose transport and motile activity in islet cells.  相似文献   

10.
Available information on the fate and insulinotropic action of L-alanine in isolated pancreatic islets is restricted to data collected in obese hyperglycemic mice. Recent data, however, collected mostly in tumoral islet cells of either the RINm5F line or BRIN-BD11 line, have drawn attention to the possible role of Na(+) co-transport in the insulinotropic action of L-alanine. In the present study conducted in islets prepared from normal adult rats, L-alanine was found (i) to inhibit pyruvate kinase in islet homogenates, (ii) not to affect the oxidation of endogenous fatty acids in islets prelabelled with [U-14C]palmitate, (iii) to stimulate 45Ca uptake in islets deprived of any other exogenous nutrient, and (iv) to augment insulin release evoked by either 2-ketoisocaproate or L-leucine, whilst failing to significantly affect glucose-induced insulin secretion. The oxidation of L-[U-14C]alanine was unaffected by D-glucose, but inhibited by L-leucine. Inversely, L-alanine decreased the oxidation of D-[U-14C]glucose, but failed to affect L-[U-14C]leucine oxidation. It is concluded that the occurrence of a positive insulinotropic action of L-alanine is restricted to selected experimental conditions, the secretory data being compatible with the view that stimulation of insulin secretion by the tested nutrient(s) reflects, as a rule, their capacity to augment ATP generation in the islet B cells. However, the possible role of Na(+) co-transport in the secretory response to L-alanine cannot be ignored.  相似文献   

11.
In tumoral islet cells (RINm5F line) the phosphorylation of D-fructose is catalyzed by hexokinase rather than fructokinase. Fructose 6-phosphate appears to be preferentially channelled into the pentose cycle, as suggested by a ratio of D-[1-14C]fructose/D-[U-14C]fructose oxidation close to 2.7, the failure to generate 14C-labelled lactate from D-[1-14C]fructose and a poor metabolic response to menadione. When the islet cells are exposed to both D-fructose and D-glucose, however, the metabolism of the former hexose is dramatically modified, fructose 6-phosphate being now formed at a lower rate and preferentially channelled into the glycolytic pathway. These findings illustrate the existence of regulatory steps in fructose catabolism located distally to its site of phosphorylation.  相似文献   

12.
At variance with normal islet cells, tumoral insulin-producing cells of the RINm5F line were found to display a positive secretory response not solely to D-glucose and D-mannose, but also to D-fructose and D-galactose. All hexoses increased the ATP/ADP ratio, exerted a sparing action upon the oxidation of endogenous nutrients in cells prelabelled with either L-[U-14C]glutamine or [U-14C]palmitate, increased the output of lactic acid and, as judged from data collected in the presence of D-[U-14C]hexoses, underwent oxidation in the RINm5F cells. The secretory response to these four hexoses appeared commensurate with the extent of their metabolic effects.  相似文献   

13.
The isotopic discrimination, diastereotopic specificity and intramolecular hydrogen transfer characterizing the reaction catalyzed by phosphomannoisomerase are examined. During the monodirectional conversion of D-[2-3H]mannose 6-phosphate to D-fructose 6-phosphate and D-fructose 1,6-bisphosphate, the reaction velocity is one order of magnitude lower than with D-[U-14C]mannose 6-phosphate and little tritium (less than 6%) is transferred intramolecularly. Inorganic phosphate decreases the reaction velocity but favours the intramolecular transfer of tritium. Likewise, when D-[1-3H]fructose 6-phosphate prepared from D-[1-3H]glucose is exposed solely to phosphomannoisomerase, the generation of tritiated metabolites is virtually restricted to 3H2O and occurs at a much lower rate than the production of D-[U-14C]mannose 6-phosphate from D-[U-14C]fructose 6-phosphate. However, no 3H2O is formed when D-[1-3H]fructose 6-phosphate generated from D-[2-3H]glucose is exposed to phosphomannoisomerase, indicating that the diastereotopic specificity of the latter enzyme represents a mirror image of that of phosphoglucoisomerase. Advantage is taken of such a contrasting enzymic behaviour to assess the back-and-forth flow through the reaction catalyzed by phosphomannoisomerase in intact cells exposed to D-[1-3H]glucose, D-[5-3H]glucose or D-[6-3H]glucose. Relative to the rate of glycolysis, this back-and-forth flow amounted to approx. 4% in human erythrocytes and rat parotid cells, 9% in tumoral cells of the RINm5F line and 47% in rat pancreatic islets.  相似文献   

14.
Glucose metabolism in insulin-producing tumoral cells   总被引:2,自引:0,他引:2  
Homogenates of insulin-producing tumoral cells catalyzed the phosphorylation of glucose, mannose, and fructose. The kinetics of phosphorylation at increasing glucose concentrations, the inhibitory effect of glucose 6-phosphate, and the comparison of results obtained with distinct hexoses indicated the presence of both low-Km hexokinase-like and high-Km enzymatic activities, the results being grossly comparable to those collected in normal pancreatic islets. Relative to protein content, the glucose-phosphorylating enzymatic activity was higher in tumoral than normal islet cells. The activity of other enzymes was either lower (glutamate dehydrogenase), moderately higher (phosphoglucomutase, lactate dehydrogenase) or considerably greater (ornithine decarboxylase) in tumoral than in normal islet cells. In intact tumoral cells, incubated under increasing glucose concentrations, the oxidation of D-[U-14C]glucose and the output of lactic and pyruvic acids reached a close-to-maximal value at 2.8 mM glucose. The ratios for glucose oxidation/utilization and lactate/pyruvate output were much lower in tumoral than in normal islet cells. Although glucose caused a modest increase in insulin output from the tumoral cells, this effect was saturated at a low glucose concentration (2.8 mM) and less marked than that of other secretagogues (e.g., L-leucine, L-ornithine, or forskolin). Thus, despite a close-to-normal enzymatic equipment for glucose phosphorylation, the tumoral cells displayed severe abnormalities in the metabolism and secretory response to this hexose. These findings point to regulatory mechanisms distal to glucose phosphorylation in the control of glucose metabolism in insulin-producing cells.  相似文献   

15.
In perifused tumoral islet cells (RINm5F line), which were prelabelled with either [32P]orthophosphate, 86Rb+ or 45Ca2+, the administration of D-glucose (1.4, 2.8 or 16.7 mM) increased the efflux of 32P, decreased the outflow of 86Rb, increased slightly the efflux of 45Ca from cells perifused in the presence of Ca2+, and decreased modestly the outflow of 45Ca from cells perifused in the absence of Ca2+. D-glucose also stimulated the net uptake of 45Ca2+. When Ba2+ (2 mM) was used, in the absence of Ca2+, instead of D-glucose as an insulin secretagogue, the efflux of 32P was little affected, but the outflow of 45Ca was dramatically increased. These changes are qualitatively similar to those occurring in normal islet cells. Nevertheless, the ionic response to D-glucose appeared, as a rule, less marked in tumoral than normal islet cells. Moreover, the concentration-response relationship was shifted to a lower range of hexose concentrations in the RINm5F cells.  相似文献   

16.
In order to assess the respective contribution of the exocrine and endocrine moieties of the pancreas to the overall net uptake of selected monosaccharides by the pancreatic gland, the apparent distribution space of L-[1-14C]glucose, 3-O-[14C-methyl]-D-glucose, D-[U-14C]glucose, D-[U-14C]mannose and D-[U-14C]fructose was measured in pieces of pancreas obtained from either control rats or animals injected with streptozotocin. Although the time course for the uptake of 3-O-[14C-methyl]-D-glucose, D-[U-14C]glucose, D-[U-14C]mannose and D-[U-14C]fructose was much slower in the pieces of pancreas than that previously documented in isolated pancreatic islets, no significant difference could, as a rule, be detected between the results obtained in pancreatic pieces of control and streptozotocin rats. A comparable situation prevailed in the pancreas of animals examined 3 min after the intravenous injection of 3-O-[14C-methyl]-D-glucose. D-Glucose inhibited the uptake of 3-O-[14C-methyl]-D-glucose and that of D-[U-14C]fructose. Likewise, 3-O-methyl-D-glucose inhibited the uptake of D-[U-14C]glucose. Cytochalasin B (20 microm) also inhibited the uptake of 3-O-[14C-methyl]-D-glucose and D-[U-14C]glucose, but not that of D-[U-14C]fructose. D-Mannoheptulose hexaacetate, but not the unesterified heptose, inhibited the metabolism of tritiated and 14C-labelled D-glucose, as well as the net uptake of D-[U-14C]glucose and D-[U-14C]mannose and, to a lesser extent, that of D-[U-14C]fructose. These findings indicate that despite marked differences between endocrine and exocrine pancreatic cells in terms of both the time course for the uptake of several hexoses and the inhibition of their phosphorylation by D-mannoheptulose, little or no preferential labelling of the endocrine moiety of the pancreas by the 14C-labelled hexoses is observed, at least when judged from their distribution space in pancreatic pieces or the whole pancreatic gland. Nevertheless, the findings made with D-mannoheptulose and its hexaacetate ester raise the view that this heptose could conceivably be used to achieve a sizeable preferential labelling of the endocrine pancreas under the present experimental conditions.  相似文献   

17.
Drosophila melanogaster has become a prominent and convenient model for analysis of insulin action. However, to date very little is known regarding the effect of insulin on glucose uptake and metabolism in Drosophila. Here we show that, in contrast to effects seen in mammals, insulin did not alter [(3)H]2-deoxyglucose uptake and in fact decreased glycogen synthesis ( approximately 30%) in embryonic Drosophila Kc cells. Insulin significantly increased ( approximately 1.5-fold) the production of (14)CO(2) from D-[1-(14)C]glucose while the production of (14)CO(2) from D-[6-(14)C]glucose was not altered. Thus, insulin-stimulated glucose oxidation did not occur via increasing Krebs cycle activity but rather by stimulating the pentose phosphate pathway. Indeed, inhibition of the oxidative pentose phosphate pathway by 6-aminonicotinamide abolished the effect of insulin on (14)CO(2) from D-[U-(14)C]glucose. A corresponding increase in lactate production but no change in incorporation of D-[U-(14)C]glucose into total lipids was observed in response to insulin. Glucose metabolism via the pentose phosphate pathway may provide an important source of 5'-phosphate for DNA synthesis and cell replication. This novel observation correlates well with the fact that control of growth and development is the major role of insulin-like peptides in Drosophila. Thus, although intracellular signaling is well conserved, the metabolic effects of insulin are dramatically different between Drosophila and mammals.  相似文献   

18.
Glucose metabolism and insulin release were studied in isolated rat islets and in an insulin-producing rat cell-line (RINm5F). Intact islets displayed two components of glucose utilization, with glucose stimulation of insulin release being associated with the high-Km component (reflecting glucokinase-like activity). Glucose failed to stimulate insulin release from RINm5F cells, which only displayed a single low-Km component of glucose utilization. Only low-Km (hexokinase-like) glucose-phosphorylating activity was found for disrupted RINm5F cells. These changes in glucose metabolism may contribute towards the failure of glucose to stimulate insulin release from RINm5F cells.  相似文献   

19.
The presence of carbonic anhydrase (type V) was recently documented in rat and mouse pancreatic islet beta-cells by immunostaining and Western blotting. In the present study, the activity of carbonic anhydrase was measured in rat islet homogenates and shown to be about four times lower than in rat parotid cells. The pattern for the inhibitory action of acetazolamide on carbonic anhydrase activity also differed in islet and parotid cell homogenates, suggesting the presence of different isoenzymes. NaN3 inhibited carbonic anhydrase activity in islet homogenates and both D-[U-14C]glucose oxidation and glucose-stimulated insulin secretion. Acetazolamide (0.3-10.0 mM) also decreased glucose-induced insulin output but failed to affect adversely D-[U-14C]glucose oxidation, although it inhibited the conversion of D-[5-3H]glucose to [3H]OH and that of D-[U-14C]glucose to acidic metabolites. Hydrochlorothiazide (3.0-10.0 mM), which also caused a concentration-related inhibition of the secretory response, like acetazolamide (5.0-10.0 mM), decreased H(14)CO3- production from D-[U-14C]glucose (16.7 mM). Acetazolamide (5.0 mM) did not affect the activity of volume-sensitive anion channels in beta-cells but lowered intracellular pH and adversely affected both the bioelectrical response to d-glucose and its effect on the cytosolic concentration of Ca2+ in these cells. The lowering of cellular pH by acetazolamide, which could well be due to inhibition of carbonic anhydrase, might in turn account for inhibition of glycolysis. The perturbation of stimulus-secretion coupling in the beta-cells exposed to acetazolamide may thus involve impaired circulation in the pyruvate-malate shuttle, altered mitochondrial Ca2+ accumulation, and perturbation of Cl- fluxes, resulting in both decreased bioelectrical activity and insulin release.  相似文献   

20.
In pancreatic islet homogenates incubated in the presence of a high glucose concentration (40 mM), the beta-anomer of D-glucose is phosphorylated at a higher rate than the alpha-anomer, whether in the absence or presence of exogenous glucose 6-phosphate. However, in intact islets also exposed to 40 mM D-glucose, the production of 3H2O from D-[5-3H] glucose, the oxidation of D-[U-14C] glucose and the glucose-induced increment in either lactate production or 45Ca net uptake, as well as the release of insulin from isolated perfused pancreases, are not higher with beta- than alpha-D-glucose. It is concluded that the rate of glucose utilization by islet cells is not regulated solely by the activity of hexokinase and/or glucokinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号