首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The antitumour lectin from Agrocybe aegerita, named AAL, shows strong inhibition effects on human and mouse tumour cells via apoptosis induction activity. Recombinant AAL (rAAL) has been expressed and purified. Both rAAL and rAAL-lactose complex have been crystallized and their X-ray diffraction data were collected to resolutions of 1.9 A and 1.6 A, respectively. Both crystals belong to space group P2(1) with unit cell parameters a = 53.20 A, b = 66.01 A, c = 57.86 A, beta = 109.38 and a = 53.38 A, b = 66.29 A, c = 58.02 A, beta = 109.03, respectively.  相似文献   

2.

Background

We have previously reported a novel fungal galectin Agrocybe aegerita lectin (AAL) with apoptosis-induced activity and nuclear migration activity. The importance of nuclear localization for AAL's apoptosis-induced activity has been established by mutant study. However, the mechanism remains unclear.

Methods

We further investigated the mechanism using a previously reported carbohydrate recognition domain (CRD) mutant protein H59Q, which retained its nuclear localization activity but lost most of its apoptotic activity. The cell membrane-binding ability of recombinant AAL (rAAL) and H59Q was analyzed by FACS, and their cellular partners were identified by affinity chromatography and mass spectroscopy. Furthermore, the interaction of AAL and ligand was proved by mammalian two-hybrid and pull down assays. A knockdown assay was used to confirm the role of the ligand.

Results

The apoptotic activity of AAL could be blocked by lactose. Mutant H59Q retained comparable cell membrane-binding ability to rAAL. Four cellular binding partners of AAL in HeLa cells were identified: glucose-regulated protein 78 (GRP78); mortality factor 4-like protein 1 (MRG15); elongation factor 2 (EEF2); and heat shock protein 70 (Hsp70). CRD region of AAL was required for the interaction between AAL/mutant AAL and MRG15. MRG15 knockdown increased the cells' resistance to AAL treatment.

Conclusion

MRG15 was a nuclear ligand for AAL in HeLa cells. These data implied the existence of a novel nuclear pathway for the antitumor activity of fungal galectin AAL.

General significance

These findings provide a novel explanation of AAL bioactivity and contribute to the understanding of mushroom lectins' antitumor activity.  相似文献   

3.
Agrocybe aegerita lectin (AAL) was identified previously in our group as a novel galectin from medicinal fungi Agrocybe aegerita, and has been shown to effectively induce cancer cell cycle arrest and apoptosis in vitro and tumor regression in vivo. Here, AAL was observed to translocate into the HeLa cell nucleus and induce cell apoptosis when it was predominantly in the nucleus. The N-terminus and C-terminus of AAL were required for nuclear localization. Site mutated proteins were generated based on AAL structure. Dimer interface mutant I25G, carbohydrate recognition domain (CRD) mutant R63H, and loop region mutant L33A could not enter the nucleus and lost the ability to induce apoptosis. CRD mutant H59Q and loop region mutant I144G maintained nuclear localization activity, and H59Q retained residual bioability but I144G had no activity, indicating that nuclear localization is important but not sufficient for AAL to become apoptotically active. Our findings provide a novel antitumor mechanism of fungal galectin.  相似文献   

4.
Lectins are carbohydrate binding proteins that are involved in many recognition events at molecular and cellular levels. Lectin-oligosaccharide interactions are generally considered to be of weak affinity, however some mushroom lectins have unusually high binding affinity towards oligosaccharides with K (d) values in the micromolar range. This would make mushroom lectins ideal candidates to study protein-carbohydrate interactions. In the present study we investigated the properties of a recombinant form of the mushroom lectin Aleuria aurantia (AAL). AAL is a fucose-binding lectin composed of two identical 312-amino acid subunits. Each subunit contains five binding sites for fucose. We found that one of the binding sites in rAAL had unusually high affinities towards fucose and fucose-containing oligosaccharides with K (d) values in the nanomolar range. This site could bind to oligosaccharides with fucose linked alpha1-2, alpha1-3 or alpha1-4, but in contrast to the other binding sites in AAL it could not bind oligosaccharides with alpha1-6 linked fucose. This binding site is not detected in native AAL (nAAL) one possible explanation may be that this site is blocked with free fucose in nAAL. Recombinant AAL was produced in E. coli as a His-tagged protein, and purified in a one-step procedure. The resulting protein was analyzed by electrophoresis, enzyme-linked lectin assay and circular dichroism spectroscopy, and compared to nAAL. Binding properties were measured using tryptophan fluorescence and surface plasmon resonance. Removal of the His-tag did not alter the binding properties of recombinant AAL in the enzyme-linked lectin assay. Our study forms a basis for understanding the AAL-oligosaccharide interaction and for using molecular techniques to design lectins with novel specificities and high binding affinities towards oligosaccharides.  相似文献   

5.
SET-ting the stage for life and death   总被引:2,自引:0,他引:2  
Chakravarti D  Hong R 《Cell》2003,112(5):589-591
Cytotoxic T lymphocytes release granzymes (Gzm) A and B to induce apoptosis or programmed cell death of virally infected or tumor cells. In this issue of Cell, Fan et al. identify the tumor metastasis suppressor NM23-H1 as a GzmA-activated, apoptosis-inducing DNase and the oncoprotein SET as its inhibitor. Work from the Lieberman and Wang groups indicates a surprising role for a group of acidic nucleo-cytoplasmic proteins in regulating apoptosis.  相似文献   

6.
Nick-translation using mild digestion with DNase I allows preferential labeling of actively transcribing or potentially active genes, as compared with inactive genes. We have adapted this method to the level of electron microscopy to see the DNase I-sensitive regions in situ in Ehrlich tumor cells. In interphase cells treated with very low concentrations of DNase I, labeled sequences are found at the borders and in the close vicinity of condensed chromatin blocks. Labeling of condensed areas of chromatin requires higher DNase I concentrations and longer incubation in the nick-translation medium. In the nucleolus, the first sites to be nick-translated are the fibrillar centers and the interstices surrounding them, whereas the dense fibrillar component never contains labeled sequences. When cells are pretreated with actinomycin D, only a few perinucleolar clumps of condensed chromatin are labeled under the same conditions. This method provides a new tool for studying the functional organization of chromatin within a cell. The precise location of nick-translated sites in nucleolar components observed could change classical views concerning the functional organization of the nucleolus.  相似文献   

7.
Cytolethal distending toxins (CDTs) block cell division by arresting the eukaryotic cell cycle at G2/M. Although previously not recognized in standard BLAST searches, a position-specific iterated (PSI) BLAST search of the protein data bank using CDT polypeptides as query sequences indicated that CdtB bears significant position-specific homology to type I mammalian DNases. The PSIBLAST sequence alignment reveals that residues of DNase I involved in phosphodiester bond hydrolysis (His134 and His252) are conserved in CdtB as well as their respective hydrogen bond pairs (Glu78 and Asp212). CdtB also contains a pentapeptide motif found in all DNase I enzymes. Further, crude CDT preparations possess detectable DNase activity not associated with identical preparations from control cells. Five CdtB mutations in amino acids corresponding to DNase I active site residues were prepared and expressed together with wild-type CdtA and CdtC polypeptides. Mutation in four of the five DNase-specific active site residues resulted in CDT preparations that lacked DNase activity and failed to induce cellular distension or arrest division of HeLa cells. The fifth mutation, Glu86 (Glu78 in DNase I), retained the ability to induce a moderate level of cell cycle arrest and displayed reduced DNase activity relative to wild-type CDT. Together, these data suggest that the CDT holotoxin has intrinsic DNase activity that is associated with the CdtB polypeptide and that this DNase activity may be responsible for the CDT-induced cell cycle arrest.  相似文献   

8.
9.
Human prostate cancer cells (DU145) implanted into nude mice are deficient in DNase activity. After administration of a vitamin C/vitamin K(3) combination, both alkaline DNase (DNase I) and acid DNase (DNase II) activities were detected in cryosections with a histochemical lead nitrate technique. Alkaline DNase activity appeared 1 hr after vitamin administration, decreased slightly until 2 hr, and disappeared by 8 hr after treatment. Acid DNase activity appeared 2 hr after vitamin administration, reached its highest levels between 4 and 8 hr, and maintained its activity 24 hr after treatment. Methyl green staining indicated that DNase expression was accompanied by a decrease in DNA content of the tumor cells. Microscopic examination of 1-microm sections of the tumors indicated that DNase reactivation and the subsequent degradation of DNA induced multiple forms of tumor cell death, including apoptosis and necrosis. The primary form of vitamin-induced tumor cell death was autoschizis, which is characterized by membrane damage and the progressive loss of cytoplasm through a series of self-excisions. These self-excisions typically continue until the perikaryon consists of an apparently intact nucleus surrounded by a thin rim of cytoplasm that contains damaged organelles.  相似文献   

10.
Activation of the proapoptotic receptor death receptor5 (DR5) in various cancer cells triggers programmed cell death through the extrinsic pathway. We have generated a fully human monoclonal antibody (Apomab) that induces tumor cell apoptosis through DR5 and investigated the structural features of its interaction with DR5. Biochemical studies showed that Apomab binds DR5 tightly and selectively. X-ray crystallographic analysis of the complex between the Apomab Fab fragment and the DR5 ectodomain revealed an interaction epitope that partially overlaps with both regions of the Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand binding site. Apomab induced DR5 clustering at the cell surface and stimulated a death-inducing signaling complex containing the adaptor molecule Fas-associated death domain and the apoptosis-initiating protease caspase-8. Fc crosslinking further augmented Apomab's proapoptotic activity. In vitro, Apomab triggered apoptosis in cancer cells, while sparing normal hepatocytes even upon anti-Fc crosslinking. In vivo, Apomab exerted potent antitumor activity as a single agent or in combination with chemotherapy in xenograft models, including those based on colorectal, non-small cell lung and pancreatic cancer cell lines. These results provide structural and functional insight into the interaction of Apomab with DR5 and support further investigation of this antibody for cancer therapy.  相似文献   

11.
A related series of styryllactones with small functional and stereochemical variations were compiled for a comparative study of their apoptotic activities toward two tumorigenic and one non-tumorigenic control cell line. While a substantial range of intrinsic activity was observed, the relative order of activity of the different compounds toward the cell types varied somewhat as did the relative ratios of apoptosis and necrosis observed in conjunction with the loss of cell viability. While some of the styryllactones showed substantial activity, a small but significant apoptosis-induced synergism was demonstrated with (?)-altholactone and TRAIL (tumor necrosis factor-related apoptosis-inducing ligand).  相似文献   

12.
This study is devoted to the analysis of DNase activity and DNA fragmentation level in liver cells nuclei of rats with transplanted Guerin's carcinoma on irradiation background. Was shown, that in an organism of previously irradiated rat with tumor the dominance of neoplasm development over the consequences of the irradiation is observed on the initial stages of the experiment. The alignment of gamma-irradiation influencing already takes place from the first stages after Guerin's carcinoma transplantation, which is testified by the decrease of DNase activity of liver cells nuclei and the decrease of a degree of nuclear DNA fragmentation. On the stationary stages of tumor growth the general action of the factors causes differences in the parameters of the investigated animal groups. It shows that together with the constant reduced level of DNase activity the processes of DNA fragmentation strengthen and their intensity reaches maximum during this period. The nature of the fragmented DNA accumulation is similar to the irradiated organism on the first days after the radiation factor removal. Thus, the radiation-induced signal in the organism with tumor is leveled under the conditions of active neoplasm growth; nevertheless, the consequents of its operating do not disappear, and only move away in time.  相似文献   

13.
The activity of ICE-like proteases or caspases is essential for apoptosis. Multiple caspases participate in apoptosis in mammalian cells but how many caspases are involved and what is their relative contribution to cell death is poorly understood. To identify caspases activated in apoptotic cells, we developed an approach to simultaneously detect multiple active caspases. Using tumor cells as a model, we have found that CPP32 (caspase 3) and Mch2 (caspase 6) are the major active caspases in apoptotic cells, and are activated in response to distinct apoptosis-inducing stimuli and in all cell lines analyzed. Both CPP32 and Mch2 are present in apoptotic cells as multiple active species. In a given cell line these species remained the same irrespective of the apoptotic stimulus used. However, the species of CPP32 and Mch2 detected varied between cell lines, indicating differences in caspase processing. The strategy described here is widely applicable to identify active caspases involved in apoptosis.  相似文献   

14.
The best-characterized biochemical feature of apoptosis is degradation of genomic DNA into oligonucleosomes. The endonuclease responsible for DNA degradation in caspase-dependent apoptosis is caspase-activated DNase. In caspase-independent apoptosis, different endonucleases may be activated according to the cell line and the original insult. Among the known effectors of caspase-independent cell death, L-DNase II (LEI [leukocyte elastase inhibitor]-derived DNase II) has been previously characterized by our laboratory. We have thus shown that this endonuclease derives from the serpin superfamily member LEI by posttranslational modification (A. Torriglia, P. Perani, J. Y. Brossas, E. Chaudun, J. Treton, Y. Courtois, and M. F. Counis, Mol. Cell. Biol. 18:3612-3619, 1998). In this work, we assessed the molecular mechanism involved in the change in the enzymatic activity of this molecule from an antiprotease to an endonuclease. We report that the cleavage of LEI by elastase at its reactive center loop abolishes its antiprotease activity and leads to a conformational modification that exposes an endonuclease active site and a nuclear localization signal. This represents a novel molecular mechanism for a complete functional conversion induced by changing the conformation of a serpin. We also show that this molecular transformation affects cellular fate and that both endonuclease activity and nuclear translocation of L-DNase II are needed to induce cell death.  相似文献   

15.
Synchronous cultures of HeLa cells were obtained by selective detachment of cells in mitosis and fluctuations in enzyme activity were followed during the subsequent cell cycle. The enzymes measured were alkaline and acid phosphatases and a nuclease active on denatured DNA at alkaline pH (alkaline DNase). Each of these enzymes showed a different pattern of activity in the cell cycle, but a temporal relationship to the DNA synthetic phase was apparent in each case. Treatment of the cultures at the beginning of the cell cycle with 15 mM thymidine did not alter the subsequent pattern of fluctuations in activity of alkaline phosphatase or of acid phosphatase, although DNA synthesis was fully inhibited by this treatment. This indicates that the pattern of activity of some enzymes is not linked to DNA replication. On the other hand, the pattern of fluctuations in the activity of alkaline DNase was abolished by thymidine treatment, and elevation of the activity of this enzyme was observed. These results suggest complex and variable relationships between phases of the cell cycle and enzyme activity, and show that inhibition of DNA synthesis is not a suitable procedure for induction of culture synchrony if enzyme activities are to be studied.  相似文献   

16.
J L Feng  J Irving  B Villeponteau 《Biochemistry》1991,30(19):4747-4752
Although it is well-known that active domains of chromatin have elevated DNase I sensitivity, it can be difficult to observe preferential sensitivity in many cell types. We show that the DNase I sensitivity of active chromatin is enhanced some 10-fold by treating nuclei with the phosphatase inhibitor p-(chloromercuri)benzenesulfonic acid (CMBS) whereas DNase I sensitivity in inactive domains is only 3-fold higher. We further show that CMBS-enhanced DNase I sensitivity is associated with at least two histone modifications. First, the negatively charged CMBS molecule becomes covalently attached to the thiol groups on histone H3. Second, histone H2A phosphorylation is significantly elevated in treated nuclei. The phosphorylation data along with other results point to the possibility that H2A phosphorylation plays a role in enhancing preferential DNase I sensitivity. Whatever the mechanism, CMBS treatment of nuclei followed by DNase I digestion provides a novel and reproducible assay for probing the chromatin structure of active domains.  相似文献   

17.
Aleuria aurantia lectin (AAL) is an L-fucose-specific lectin produced in the mycelia and fruit-bodies of the widespread ascomycete fungus Aleuria aurantia. It is extensively used in the detection of fucose, but its physiological role remains unknown. To investigate this, we analyzed the interaction between AAL and, a zygomycete fungus Mucor racemosus, which is assumed to contain fucose in its cell wall. AAL specifically bound to the hyphae of M. racemosus, because binding was inhibited by L-fucose but not by D-fucose. It inhibited the growth of the fungus at 1 μM, and the M. racemosus cells were remarkably disrupted at 7.5 μM. In contrast, two other fucose-specific lectins, Anguilla anguilla agglutinin and Ulex europaeus agglutinin, did not inhibit the growth of M. racemosus. These results suggest that the growth inhibition activity is unique to AAL, and that AAL could act as an antifungal protein in natural ecosystems.  相似文献   

18.
19.
Studying the activity of DNase II in relation to cell cycle in synchronized HeLa S3 cells show a two to seven fold increase in DNase II activity at those times when DNA synthesis is taking place. The peaks of DNase II activity coincide with the peaks of DNA synthesis. The increased DNase II activity could be prevented by puromycin, suggesting that the enzyme activity increased at the S phase was caused by synthesis of new molecules rather than the activation of existing molecules. Acid phosphatase (as a marker for lysosomal enzymes) does not show an induction similar to that observed for DNase II in relation to cell cycle.  相似文献   

20.
A lectin named AAL has been purified from the fruiting bodies of the edible mushroom Agrocybe aegerita. AAL consisted of two identical subunits of 15.8 kDa, its pI was about 3.8 determined by isoelectric focusing, and no carbohydrate was discerned. Being treated by pyrogultamate aminopeptidase, the blocked N-terminus of AAL was sequenced as QGVNIYNI. AAL agglutinated human and animal erythrocytes regardless of blood type or animal species. Its hemagglutinating activity was unaffected by acid or alkali treatment and demetalization or addition of divalent metals Mg(2+), Ca(2+) and Zn(2+). AAL was toxic to mice: its LD50 was 15.85 mg per kilogram body weight by intraperitoneal injection. In this study, two novel activities of AAL were proved. It showed inhibition activity to infection of tobacco mosaic virus on Nicotiana glutinosa. The result of IEF suggested that AAL attached to TMV particles. Mycelia differentiation promotion was the other interesting activity. AAL promoted the differentiation of fruit body primordia from the mycelia of Agrocybe aegerita and Auricularia polytricha. AAL antiserum was prepared and immunologically cross-reactived with several proteins from five other kinds of mushrooms. These results suggested that AAL probably was a representative of a large protein family, which plays important physiological roles in mushroom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号