首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hybrid metabolic pathway through which benzene, toluene, and p-xylene (BTX) mixture could be simultaneously mineralized was previously constructed in Pseudomonas putida TB101 (Lee, Roh, Kim, Biotechnol. Bioeng 43: 1146-1152, 1994). In this work, we improved the performance of the hybrid pathway by cloning the todC1C2BA genes in the broad-host-range multicopy vector RSF1010 and by introducing the resulting plasmid pTOL037 into P. putida mt-2 which harbors the archetypal TOL plasmid. As a result, a new hybrid strain, P. putida TB103, possessing the enhanced activity of toluene dioxygenase in the hybrid pathway was constructed. The degradation rates of benzene, toluene, and p-xylene by P. putida TB103 were increased by about 9.3-, 3.7-, and 1.4-fold, respectively, compared with those by previously constructed P. putida TB101. Apparently, this improved capability of P. putida TB103 for the degradation of BTX mixture resulted from the amplification of the todC1C2BA genes. Furthermore, a relatively long lag period for benzene degradation observed when P. putida TB101 was used for the degradation of BTX mixture at low dissolved oxygen (DO) tension disappeared when P. putida TB103 was employed. (c) 1995 John Wiley & Sons, Inc.  相似文献   

2.
Monod's equation adequately described aerobic biodegradation rates of benzene and toluene by the microbial population of a sandy aquifer when these compounds were initially present at concentrations lower than 100 mg/l each. Concentrations higher than 100 mg/l were inhibitory, and no benzene or toluene degradation was observed when these compounds were initially present at 250 mg/l each. The Monod coefficients were calculated as k = 8.3 g-benzene/g-cells/day and Ks = 12.2 mg/l for benzene, and k = 9.9 g-toluene/g-cells/day and Ks = 17.4 mg/l for toluene. Specific first-order coefficients would be 0.68 l/mg.day for benzene and 0.57 l.mg.day for toluene.  相似文献   

3.
Biotransformation of [1-6-14C]benzene and [1-14C]toluene in English ryegrass (Lolium perenne L.) seedlings was investigated. Vapors of these compounds were absorbed by the leaves of this plant. Benzene and toluene were oxidized, forming phenol and benzoic acid, respectively. A portion of phenol and benzoic acid was bound by low-molecular-weight peptides forming conjugates. A qualitative amino acid composition of the peptides involved in the conjugation was determined. After removing plants from the atmosphere containing [1-6-14C]benzene and [1-14C]toluene, the radioactivity of the conjugates gradually decreased. This process was accompanied by the evolution of 14CO2, indicating the breakdown of these conjugates. Radioactive compounds thus formed were oxidized, yielding carbon dioxide. A portion of phenol and benzoic acid, along with peptide conjugation, was subjected to further oxidative transformations up to disruption of the aromatic ring. By this pathway, nonvolatile carboxylic acids, such as muconic, fumaric, succinic, malic, malonic, glycolic, and glyoxylic, were formed. Using electron microscopy, a damaging effect of benzene on the cell ultrastructure of English ryegrass leaves was shown, and this toxic effect depended on the benzene concentration.  相似文献   

4.
Periodic perturbations were used to evaluate the system stability and robustness of naphthalene biodegradation in a continuous flow stirred tank reactor (CSTR) containing a soil slurry. The experimental design involved perturbing the test system using a sinusoidal input either of naphthalene or non-naphthalene organic carbon at different frequencies during steady state operation of the reactors. The response of the test system was determined by using time series off-gas analysis for naphthalene liquid phase concentration and degradation, total viable cell counts, and gene probe analysis of naphthalene degradative genotype, and by batch mineralization assays.Naphthalene biodegradation rates were very high throughout the experimental run (95 to >99% removed) resulting in very low or undetectable levels of naphthalene in the off-gas and reactor effluent. Attempts to reduce the rate of naphthalene biotransformation by either reducing the reactor temperature from 20°C to 10°C or the dissolved oxygen level (>1 mg/L) were unsuccessful. Significant naphthalene biodegradation was observed at 4°C. While variable, the microbial community as measured by population densities was not significantly affected by temperature changes. In terms of naphthalene biotransformation, the system was able to adapt readily to all perturbations in the reactor.Department of Chemical EngineeringDepartment of Microbiology and The Graduate Program in EcologyDepartment of Civil Engineering, New Orleans University  相似文献   

5.
Bacillus stearothermophilus strain BR325 demonstrating broad aromatic substrate capability was isolated from petroleum-contaminated soil. The chromosomally-located aromatic pathway from this isolate was cloned intoEscherichia coli as a 32 kb insert in cosmid pHC79, conferring growth on benzene, phenol, and toluene as sole carbon sources.  相似文献   

6.
Two Pseudomonas species (designated strains B1 and X1) were isolated from an aerobic pilot-scale fluidized bed reactor treating groundwater containing benzene, toluene, and p-xylene (BTX). Strain B1 grew with benzene and toluene as the sole sources of carbon and energy, and it cometabolized p-xylene in the presence of toluene. Strain X1 grew on toluene and p-xylene, but not benzene. In single substrate experiments, the appearance of biomass lagged the consumption of growth substrates, suggesting that substrate uptake may not be growth-rate limiting for these substrates. Batch tests using paired substrates (BT, TX, or BX) revealed competitive inhibition and cometabolic degradation patterns. Competitive inhibition was modeled by adding a competitive inhibition term to the Monod expression. Cometabolic transformation of nongrowth substrate (p-xylene) by strain B1 was quantified by coupling xylene transformation to consumption of growth substrate (toluene) during growth and to loss of biomass during the decay phase. Coupling was achieved by defining two transformation capacity terms for the cometabolizing culture: one that relates consumption of growth substrate to the consumption of nongrowth substrate, and second that relates consumption of biomass to the consumption of nongrowth substrate. Cometabolism increased decay rates, and the observed yield for strain B1 decreased in the presence of p-xylene. (c) 1993 Wiley & Sons, Inc.  相似文献   

7.
Naphthalene and phenanthrene have long been used as model compounds to investigate the ability of bacteria to degrade polycyclic aromatic hydrocarbons. The catabolic pathways have been determined, several of the enzymes have been purified to homogeneity, and genes have been cloned and sequenced. However, the majority of this work has been performed with fast growing Pseudomonas strains related to the archetypal naphthalene-degrading P. putida strains G7 and NCIB 9816-4. Recently Comamonas testosteroni strains able to degrade naphthalene and phenanthrene have been isolated and shown to possess genes for polycyclic aromatic hydrocarbon degradation that are different from the canonical genes found in Pseudomonas species. For instance, C. testosteroni GZ39 has genes for naphthalene and phenanthrene degradation which are not only different from those found in Pseudomonas species but are also arranged in a different configuration. C. testosteroni GZ42, on the other hand, has genes for naphthalene and phenanthrene degradation which are arranged almost the same as those found in Pseudomonas species but show significant divergence in their sequences. Received 10 August 1997/ Accepted in revised form 15 August 1997  相似文献   

8.
The biotransformation of toluene, benzene and naphthalene was examined in anaerobic sediment columns. Five columns filled with a mixture of sediments were operated in the presence of bicarbonate, sulfate, iron, manganese, or nitrate as electron acceptor. The columns were continuously percolated with a mixture of the three organic compounds (individual concentrations 25–200 M) at 20°C.Toluene was transformed readily (within 1 to 2 months) under all redox conditions tested. Benzene was recalcitrant over the test period of 375–525 days in all five columns. Naphthalene was partly transformed in the column with nitrate or manganese as electron acceptor present; the addition of benzoate had a positive effect in the column with nitrate. In the column with sulfate, the majority of the added naphthalene disappeared. No effect was observed after adding and omitting an easier degradable substrate. [14C]naphthalene was used to confirm this disappearance to be the result of degradation; two third of the naphthalene was converted to CO2.  相似文献   

9.
Sphingomonas yanoikuyae B1 is able to utilize toluene, m-xylene, p-xylene, biphenyl, naphthalene, phenanthrene, and anthracene as sole sources of carbon and energy for growth. A forty kilobase region of DNA containing most of the genes for the degradation of these aromatic compounds was previously cloned and sequenced. Insertional inactivation of bphC results in the inability of B1 to grow on both polycyclic and monocyclic compounds. Complementation experiments indicate that the metabolic block is actually due to a polar effect on the expression of bphA3, coding for a ferredoxin component of a dioxygenase. Lack of the ferredoxin results in a nonfunctional polycyclic aromatic hydrocarbon dioxygenase and a nonfunctional toluate dioxygenase indicating that the electron transfer components are capable of interacting with multiple oxygenase components. Insertional inactivation of a gene for a dioxygenase oxygenase component downstream of bphA3 had no apparent effect on growth besides a polar effect on nahD which is only needed for growth of B1 on naphthalene. Insertional inactivation of either xylE or xylG in the meta-cleavage operon results in a polar effect on bphB, the last gene in the operon. However, insertional inactivation of xylX at the beginning of this cluster of genes does not result in a polar effect suggesting that the genes for the meta-cleavage pathway, although colinear, are organized in at least two operons. These experiments confirm the biological role of several genes involved in metabolism of aromatic compounds by S. yanoikuyae B1 and demonstrate the interdependency of the metabolic pathways for polycyclic and monocyclic aromatic hydrocarbon degradation. Received 13 May 1999/ Accepted in revised form 05 July 1999  相似文献   

10.
This article presents an approach for modeling the dissolution process of single component dense non-aqueous phase liquids (DNAPL), such as tetrachloroethene and trichloroethene, in a biologically reactive porous medium. In the proposed approach, the overall transport processes are conceptualized as three distinct reactions. Firstly, the dissolution (or dissolving) process of a residual DNAPL source zone is conceptualized as a mass-transfer limited reaction. Secondly, the contaminants dissolved from the DNAPL source are allowed to partition between sediment and water phases through a rate-limited sorption reaction. Finally, the contaminants in the solid and liquid phases are allowed to degrade by a set of kinetic-limited biological reactions. Although all of these three reaction processes have been researched in the past, little progress has been made towards understanding the combined effects of these processes. This work provides a rigorous mathematical model for describing the coupled effects of these three fundamental reactive transport mechanisms. The model equations are then solved using the general-purpose reactive transport code RT3D (Clement, 1997).  相似文献   

11.
On equal parts of benzene, toluene and p-xylene (BTX), a stable bacterial consortium was enriched for removal of BTX vapours from air. As demonstrated by gas chromatographic monitoring, this consortium removed all three BTX components but was able to grow only on benzene and/or toluene. A Pseudomonas putida strain, PPO1, isolated from this consortium behaved in an identical manner. When immobilized on a porous peat/perlite column, both the consortium and the PPO1 isolated removed all three BTX components from metered air streams. However, due to the accumulation of products from the incompletely metabolized p-xylene, the removal rates were unsatisfactory and declined further with time. P. putida ATCC 33015 bearing the TOL plasmid was capable of growing on toluene, on para- and on meta- xylene isomers, but not on benzene. When the PPO1 and ATCC 33015 strains were immobilized, in equal parts, on peat/perlite columns a much improved and sustainable removal of all three BTX components was observed at the rate of 40–50 g/h. m3 filter bed. Due to the dominance of the ring-hydroxylating pathways over the TOL pathway, the classical enrichment approach did not result in a consortium capable of the sustained removal of all BTX components. However, a rationally formulated consortium consisting of members with complementary metabolic abilities was capable of this task and should be of use both in industrial emission control and in soil venting operations.  相似文献   

12.
13.
The importance of five amino acids at the active site of the multicomponent naphthalene dioxygenase (NDO) system was determined by generating site-directed mutations in various combinations. The substrate specificities of the mutant enzymes were tested with the substrates indole, indoline, 2-nitrotoluene (2NT), naphthalene, biphenyl, and phenanthrene. Transformation of these substrates measured the ability of the mutant enzymes to catalyze dioxygenation, monooxygenation, and desaturation reactions. In addition, the position of oxidation and the enantiomeric composition of products were characterized. All enzymes with up to three amino acid substitutions were able to catalyze dioxygenation reactions. A subset of these enzymes could also catalyze the monooxygenation of 2NT and desaturation of indoline. Single amino acid substitutions at positions 352 and 206 had the most profound effects on product formation. Of the single mutations made, only changes at position 352 affected the stereochemistry of naphthalene cis-dihydrodiol formed from naphthalene, but in the presence of the F352I mutation, changes at positions 206 and 295 also affected enantioselectivity. Major shifts in regioselectivity with biphenyl and phenanthrene resulted with several of the singly, doubly, and triply mutated enzymes. A new product not formed by the wild-type enzyme, phenanthrene cis-9,10-dihydrodiol, was formed as a major product from phenanthrene by enzymes with two (A206I/F352I) or three amino acid substitutions (A206I/F352I/H295I). The results indicate that a variety of amino acid substitutions are tolerated at the active site of NDO. Journal of Industrial Microbiology & Biotechnology (2001) 27, 94–103. Received 25 September 2000/ Accepted in revised form 29 June 2001  相似文献   

14.
AIMS: To isolate and characterize the phorate [O,O-diethyl-S-(ethylthio)methyl phosphoradiothioate] degrading bacteria from agricultural soil, and their assessment for multifarious biological activities of environmental and agronomic significance. METHODS AND RESULTS: Based on their morphological and biochemical characteristics, the selected isolates PS-1, PS-2 and PS-3 were presumptively identified as Rhizobium, Pseudomonas and Proteus species, respectively. The HPLC analysis of phorate in bioaugmented soil revealed its complete disappearance within 40 days. The degradation isotherms of the isolates PS-1, PS-2 and PS-3 suggested time-dependent disappearance of phorate following the first-order rate kinetics at the corresponding rate constants of 0.04, 0.05 and 0.04 d-1. Besides, the isolates concurrently exhibited substantial phosphate solubilization, indole acetic acid (IAA) and siderophore production, as well as limited biocontrol activity against fungal phytopathogens. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The data revealed the potential of isolates for collateral plant growth promotion, biocontrol and bioremediation. The selected strains may serve as an important bioresource for development of effective super-bioinoculants.  相似文献   

15.
The intermediate metabolites of benzene transformation by a microaerophilic bacterial consortium, adapted to degrade gasoline and benzene at low concentrations of dissolved oxygen (<1 mg l-1), were identified. The examined range of initial DO concentration, 0.05 to 1 mg l-1, was considerably lower than the previously reported values believed to be necessary to initiate benzene biodegradation. An extensive transformation of benzene, higher than the theoretical predictions for its aerobic oxidation, was observed. Phenol was identified as the most stable and the major intermediate metabolite which was subsequently transformed into catechol and benzoate. The use of 13C-labeled compounds identified benzene as the source of phenol, and phenol as the source of catechol and benzoate, suggesting the involvement of a monooxygenase enzymatic system in biodegradation of benzene at low DO concentrations. A metabolic sequence was proposed to describe the simultaneous detection of catechol and benzoate during the microaerophilic transformation of benzene. The results of this work demonstrate that it is possible to transform benzene, a highly carcinogenic hydrocarbon and a major contaminant of groundwater, to more easily biodegradable compounds in the presence of very small amounts of oxygen.  相似文献   

16.
Analysis of seven plasmids (77 to 135 kb in size) of the P-7 incompatibility group that are responsible for the biodegradation of naphthalene and salicylate has shown that the main natural host of IncP-7 plasmids is the species Pseudomonas fluorescens. The IncP-7 plasmids are structurally diverse and do not form groups, as is evident from their cluster analysis. The naphthalene catabolism genes of six of the IncP-7 plasmids are conservative and homologous to the catabolic genes of NAH7 and pDTG1 plasmids. The pAK5 plasmid contains the classical nahA gene, which codes for naphthalene dioxygenase, and the salicylate 5-hydroxylase gene (nagG) sequence, which makes the conversion of salicylate to gentisate possible.__________Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 342–348.Original Russian Text Copyright © 2005 by Izmalkova, Sazonova, Sokolov, Kosheleva, Boronin.  相似文献   

17.
18.
A biomass adapted to degrade toluene and xylenes in mixture was grown in a batch reactor with substrates supplied by pulses. The inhibition of biomass growth in the course of substrate degradation was investigated. The maximal biomass concentration of 7 g l–1 was obtained using 150 l of toluene and 15 l of a mixture of xylenes in one litre of liquid medium, and the maximal biomass productivity and yield were 53 mg l–1 h–1 and 0.32 gDW g s –1 , respectively. Higher quantities of substrate added by pulses, that is 200 l of toluene with 20 l of xylenes and 300 l of toluene with 30 l of xylenes, caused an accumulation of metabolites. These higher quantities of substrates caused inhibition of microbial growth. Among the metabolites produced, 4-methyl catechol was found in large quantities in the culture medium and in the cells.  相似文献   

19.
A novel bioreactor for the biodegradation of toxic aromatic solvents, such as benzene, toluene, and xylenes in liquid effluent stream, was developed. Silicon tubing was immersed in the completely mixed and aerated bioreactor, and liquid toluene as a model solvent was circulated within the tubing. Toluene diffused out of the tube wall and was transferred at high rate into the culture broth, where biodegradation occurred. The effect of operating parameters on the toluene transfer rate was investigated. During continuous operation, the biodegradation rate was considerably higher than those obtained using conventional methods. A mathematical model was established for continuous biodegradation, and simulation results coincided with the experimental results. The performance and operational criteria of the bioreactor were analyzed on the basis of both the experimental and simulation results. (c) 1992 John Wiley & Sons, Inc.  相似文献   

20.
AIMS: To study the accumulation of the bacterial living cells (LC) and dead cells (DC) in a mixed-species biofilm developed in a 3 l biotrickling filter (BTF) challenged with toluene. METHODS AND RESULTS: The bacterial LC and DC within the biofilm developed on polypropylene Pall rings in a toluene-degrading BTF were enumerated as fluoro-microscopic counts during a 62-operating day period using nucleic acid staining and the direct epifluorescence filter technique. The biofilm development could be separated into three distinct phases: (i) cell attachment, (ii) biofilm establishment and (iii) biofilm maturation. The LC were always dominant (>/=72%) in the biofilm during the establishment phase whereas the average LC fraction decreased to 51% of the total cells in the maturation phase. The concentration of LC and DC was observed to level off after 41 days at 1010 cells per ring. The biofilm thickness and the dry weight increased independently of the cell number during the maturation phase. CONCLUSIONS: After the LC reached a maximum concentration in the biofilm, the biofilm proliferation was only characterized by the accumulation of DC and organic matter. SIGNIFICANCE AND IMPACT OF THE STUDY: The results obtained in the present study are of particular relevance for biofilm mathematical modelling and numerical simulations. They will also be useful to estimate the contribution of the living bacteria within the biofilm in bioprocesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号