首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gamma-aminobutyric acid type C (GABA(C)) receptor is a ligand-gated chloride channel with distinct physiological and pharmacological properties. Although the exact subunit composition of native GABA(C) receptors has yet to be firmly established, there is general agreement that GABA rho subunits participate in their formation. Recent studies on white perch suggest that certain GABA rho subunits can co-assemble with the GABA(A) receptor gamma2 subunit to form a heteromeric receptor with electrophysiological properties that correspond more closely to the native GABA(C) receptor on retinal neurons than any of the homomeric rho receptors. In the present study we examined the interactions among various perch GABA rho and gamma2 subunits. When co-expressed in Xenopus oocytes, the gamma2 subunit co-immunoprecipitated with Flag-tagged perch rho1A, rho1B, and rho2B subunits, but not with the Flag-tagged perch rho2A subunit. Immunocytochemical studies indicated that the membrane surface expression of the gamma2 subunit was detected only when it was co-expressed with perch rho1A, rho1B, or rho2B subunit, but not with the perch rho2A subunit or when expressed alone. In addition, co-immunoprecipitation of perch rho1B and gamma2 subunits was also detected in protein samples of the teleost retina. Taken together, these findings suggest that a heteromeric rho(gamma2) receptor could represent one form of GABA(C) receptor on retinal neurons.  相似文献   

2.
3.
The rho subunits that constitute the gamma-aminobutyric acid (GABA)C receptors of retinal neurons form a unique subclass of ligand-gated chloride channels that give rise to sustained GABA-evoked currents that exhibit slow offset (deactivation) kinetics. We exploited this property to examine the molecular mechanisms that govern the disparate response kinetics and pharmacology of perch GABA rho1B and rho2A subunits expressed in Xenopus oocytes. Using a combination of domain swapping and site-directed mutagenesis, we identified the residues at amino acid position 320 in the second transmembrane domain as an important determinant of the receptor kinetics of GABAC receptors. When the site contains a proline residue, as in wild-type rho1 subunits, the receptor deactivates slowly; when serine occupies the site, as in wild-type rho2 subunits, the time course of deactivation is more rapid. In addition, we found that the same site also altered the pharmacology of GABA rho receptors, e.g., when the serine residue of the rho2A receptor was changed to proline, the response of the mutant receptor to imidazole-4-acetic acid (I4AA) mimicked that of the rho1B receptor. However, despite gross changes in receptor pharmacology, the apparent binding affinity for the drug was not significantly altered. These findings provide further evidence that the second transmembrane domain is involved in the gating mechanism that governs the response properties of the various rho receptor subunits. It is noteworthy that the proline residue in native rho1 subunits and the serine residue of rho2 subunits are well conserved in all species, a good indication that the presence of multiple GABA rho subunits serves to generate GABAC receptors that display the wide range of response kinetics observed on various types of retinal neurons.  相似文献   

4.
The GABAA receptor gamma 1 subunit of human, rat and bovine origin was molecularly cloned and compared with the gamma 2 subunit in structure and function. Both gamma subunit variants share 74% sequence similarity and are prominently synthesized in often distinct areas of the central nervous system as documented by in situ hybridization. When co-expressed with alpha and beta subunits in Xenopus oocytes and mammalian cells, the gamma variants mediate the potentiation of GABA evoked currents by benzodiazepines and help generate high-affinity binding sites for these drugs. However, these sites show disparate pharmacological properties which, for receptors assembled from alpha 1, beta 1 and gamma 1 subunits, are characterized by the conspicuous loss in affinity for neutral antagonists (e.g. flumazenil) and negative modulators (e.g. DMCM). These findings reveal a pronounced effect of gamma subunit variants on GABAA/benzodiazepine receptor pharmacology.  相似文献   

5.
Incorporation of the epsilon subunit into the GABAA receptor has been suggested to confer unusual, but variable, biophysical and pharmacological characteristics to both recombinant and native receptors. Due to their structural similarity with the gamma subunits, epsilon subunits have been assumed to substitute at the single position of the gamma subunit in assembled receptors. However, prior work suggests that functional variability in epsilon-containing receptors may reflect alternative sites of incorporation and of not just one, but possibly multiple epsilon subunits in the pentameric receptor complex. Here we present data indicating that increased expression of epsilon, in conjunction with alpha2 and beta3 subunits, results in expression of GABAA receptors with correspondingly altered rectification, deactivation and levels of spontaneous openings, but not increased total current density. We also provide data that the epsilon subunit, like the beta3 subunit, can self-export and data from chimeric receptors suggesting that similarities between the assembly domains of the beta3 and the epsilon subunits may allow the epsilon subunit to replace the beta, as well as the gamma, subunit. The substitution of an epsilon for a beta, as well as the gamma subunit and formation of receptors with alternative patterns of assembly with respect to epsilon incorporation may underlie the observed variability in both biophysical and pharmacological properties noted not only in recombinant, but also in native receptors.  相似文献   

6.
Gamma-aminobutyric acid type A (GABAA) receptors are major inhibitory neurotransmitter-gated ion channels in the central nervous system. GABAA receptors consist of multiple subunits and exhibit distinct pharmacological and channel properties. Of all GABAA receptor subunits, the beta subunit is thought to be a key component for the functionality of the receptors. Certain types of GABAA receptors have been found to be constitutively active. However, the molecular basis for spontaneous opening of channels of these receptors is not totally understood. In this study, we showed that channels that contain the beta1 but not beta3 subunits opened spontaneously when these subunits were expressed homomerically or co-expressed with other types of GABAA receptor subunits in Xenopus oocytes. Using subunit chimeras and site-directed mutagenesis, we localized a key amino acid residue, a serine at position 265, that is critical in conferring an open state of the beta1 subunit-containing GABAA receptors in the absence of agonist. Moreover, some point mutations of Ser-265 also produced constitutively active channels. The magnitude of spontaneous activity of these receptors was correlated with the molecular volume of the residue at 265 for both homomeric and heteromeric GABAA receptors, suggesting that the spontaneous activity of the beta1 subunit-containing GABAA receptors may be mediated through a similar molecular mechanism that is dependent on the molecular volume of the residue at 265.  相似文献   

7.
It is generally accepted that gamma-aminobutyric acid (GABA) is one of the main inhibitory transmitter in the mammalian brain. There are three types of GABA receptors in the vertebrata central nervous system: the GABAA, GABAB and GABAC receptors. The GABAA receptor is a GABA-gated Cl- channel and is the tetramer ore the pentamer made of some classes of subunit (alpha, beta, gamma, delta). GABAB receptors are not affiliated with Cl(-) ionophore. GABAB receptors appear to be coupled to Ca2+ and K+ channels of presynaptic membranes. It seems they regulate the release of neurotransmitters release. The structural and functional properties of GABA receptors are discussed.  相似文献   

8.
The correct targeting of modifying enzymes to ion channels and neurotransmitter receptors represents an important biological mechanism to control neuronal excitability. The recent cloning of protein kinase C-zeta interacting proteins (ZIP1, ZIP2) identified new scaffolds linking the atypical protein kinase PKC-zeta to target proteins. GABA(C) receptors are composed of three rho subunits (rho 1-3) that are highly expressed in the retina, where they are clustered at synaptic terminals of bipolar cells. A yeast two-hybrid screen for the GABA(C) receptor rho 3 subunit identified ZIP3, a new C-terminal splice variant of the ZIP protein family. ZIP3 was ubiquitously expressed in non-neuronal and neuronal tissues, including the retina. The rho 3-binding region of ZIP3 contained a ZZ-zinc finger domain, which interacted with 10 amino acids conserved in rho 1-3 but not in GABA(A) receptors. Consistently, only rho 1-3 subunits bound to ZIP3. ZIP3 formed dimers with ZIP1-3 and interacted with PKC-zeta and the shaker-type potassium channel subunit Kv beta 2. Different domains of ZIP3 interacted with PKC-zeta and the rho 3 subunit, and simultaneous assembly of ZIP3, PKC-zeta and rho 3 was demonstrated in vitro. Subcellular co-expression of ZIP3 binding partners in the retina supported the proposed protein interactions. Our results indicate the formation of a ternary postsynaptic complex containing PKC-zeta, ZIP3, and GABA(C) receptors.  相似文献   

9.
1. Gamma-aminobutryic acid (GABA), a major inhibitory transmitter of the vertebrate retina, is synthesized from glutamate by L-glutamate decarboxylase (GAD) and mediates neuronal inhibition at GABAA receptors. GAD consists of two distinct molecular forms, GAD65 and GAD67, which have similar distribution patterns in the nervous system (Feldblum et al., 1990; Erlander and Tobin, 1991). GABAA receptors are composed of several distinct polypeptide subunits, of which the GABAA alpha 1 variant has a particularly extensive and widespread distribution in the nervous system. The aim of this study was to determine the cellular localization patterns of GAD and GABAA alpha 1 receptor mRNAs to define GABA- and GABAA receptor-synthesizing neurons in the rat retina. 2. GAD and GABAA alpha 1 mRNAs were localized in retinal neurons by in situ hybridization histochemistry with 35S-labeled antisense RNA probes complementary to GAD67 and GABAA alpha 1 mRNAs. 3. The majority of neurons expressing GAD67 mRNA is located in the proximal inner nuclear layer (INL) and ganglion cell layer (GCL). Occasional GAD67 mRNA-containing neurons are present in the inner plexiform layer. Labeled neurons are not found in the distal INL or in the outer nuclear layer (ONL). 4. GABAA alpha 1 mRNA is expressed by neurons distributed to all regions of the INL. Some discretely labeled cells are present in the GCL. Labeled cells are not observed in the ONL. 5. The distribution of GAD67 mRNA demonstrates that numerous amacrine cells (conventional, interstitial, and displaced) and perhaps interplexiform cells synthesize GABA. These cells are likely to employ GABA as a neurotransmitter. 6. The distribution of GABAA alpha 1 mRNA indicates that bipolar, amacrine, and perhaps ganglion cells express GABAA receptors having an alpha 1 polypeptide subunit, suggesting that GABA acts directly upon these cells.  相似文献   

10.
ATP and gamma-aminobutyric acid (GABA) are two fast neurotransmitters co-released at central synapses, where they co-activate excitatory P2X and inhibitory GABAA (GABA type A) receptors. We report here that co-activation of P2X2 and various GABAA receptors, co-expressed in Xenopus oocytes, leads to a functional cross-inhibition dependent on GABAA subunit composition. Sequential applications of GABA and ATP revealed that alphabeta- or alphabetagamma-containing GABAA receptors inhibited P2X2 channels, whereas P2X2 channels failed to inhibit gamma-containing GABAA receptors. This functional cross-talk is independent of membrane potential, changes in current direction, and calcium. Non-additive responses observed between cation-selective GABAA and P2X2 receptors further indicate the chloride independence of this process. Overexpression of minigenes encoding either the C-terminal fragment of P2X2 or the intracellular loop of the beta3 subunit disrupted the functional cross-inhibition. We previously demonstrated functional and physical cross-talk between rho1 and P2X2 receptors, which induced a retargeting of rho1 channels to surface clusters when co-expressed in hippocampal neurons (Boue-Grabot, E., Emerit, M. B., Toulme, E., Seguela, P., and Garret, M. (2004) J. Biol. Chem. 279, 6967-6975). Co-expression of P2X2 and chimeric rho1 receptors with the C-terminal sequences of alpha2, beta3, or gamma2 subunits indicated that only rho1-beta3 and P2X2 channels exhibit both functional cross-inhibition in Xenopus oocytes and co-clustering/retargeting in hippocampal neurons. Therefore, the C-terminal domain of P2X2 and the intracellular loop of beta GABAA subunits are required for the functional interaction between ATP- and GABA-gated channels. This gamma subunit-dependent cross-talk may contribute to the regulation of synaptic activity.  相似文献   

11.
Two novel GABAA receptor subunits exist in distinct neuronal subpopulations   总被引:26,自引:0,他引:26  
Two cDNAs encoding novel GABAA receptor subunits were isolated from a rat brain library. These subunits, gamma 2 and delta, share approximately 35% sequence identity with alpha and beta subunits and form functional GABA-gated chloride channels when expressed alone in vitro. The gamma 2 subunit is the rat homolog of the human gamma 2 subunit recently shown to be important for benzodiazepine pharmacology. Cellular localization of the mRNAs encoding the gamma 2 and delta subunits in rat brain revealed that largely distinct neuronal subpopulations express the two subunits. The delta subunit distribution resembles that of the high affinity GABAA receptor labeled with [3H]muscimol; the gamma 2 subunit distribution resembles that of GABAA/benzodiazepine receptors labeled with [3H]flunitrazepam. These findings have implications for the composition of two different GABAA receptor subtypes and for information processing in networks using GABA for signaling.  相似文献   

12.
The rho1 subunit of the ionotropic GABA receptors is thought to contribute to the formation of the GABA(C) receptors with pharmacological and physiological properties distinct from those of GABA(A) receptors. Previous characterization of this subunit expressed in the Xenopus oocytes revealed an ion channel with slow activation and deactivation and no desensitization, quite different from the properties of GABA(C) receptors observed in native cells. We expressed the human rho1 subunit in human embryonic kidney (HEK) 293 cells and quantitatively characterized the kinetic properties of these receptors using a rapid drug application device. The rho1 subunit expressed in HEK293 cells exhibited pharmacological and kinetic properties qualitatively identical to those described when rho1 was expressed in the oocytes. An apparent desensitizing current observed during a constant GABA application was determined to be secondary to an E(Cl) shift. Detailed kinetic analyses and parameter estimation for a five-state kinetic model revealed that the channel is best described by a set of rate constants with a notably faster GABA unbinding K(off) rate compared to the parameters proposed for the same subunit expressed in the oocytes. The same subunit expressed in hippocampal neurons showed activation and deactivation kinetics identical to the current characterized in HEK293 cells. The kinetic properties of rho1 subunit expressed in a nonoocyte model system may be better described quantitatively by the rate constants presented here.  相似文献   

13.
The distribution of mRNA for the rho2 subunit of the GABA(C) receptor is much broader in organotypic SC cultures than in vivo, suggesting that GABA(C) receptor expression is regulated by environmental factors. Electrophysiological recordings indicate that neurons in SC cultures have functional GABA(C) receptors, although these receptors exhibited smaller conductance than in vivo, probably due to increased rho2 subunit expression. Adding cortical input, treatment with various neuromodulators, and blocking neuronal activity with TTX failed to affect the expression of rho2 subunits. Electrophysiological recordings revealed the presence of spontaneous Ca(2+) currents in SC cultures and preventing these, by treatment with blockers of L-type Ca(2+) channels, caused rho2 mRNA expression to decline to in vivo levels. In contrast, rho1 subunit mRNA levels remained unchanged, indicating that the two subunits are independently regulated. Surprisingly, both tonic activation and blockade of GABA(C) receptors upregulated rho1/rho2 mRNA expression. Further, NGF and BDNF promoted such expression during an early postnatal time window. In vivo, expression of the rho2 mRNA in the SC, and the rho2/rho3 mRNA in the retina increased with age. Expression of the rho2 mRNA in the visual cortex, and the rho1 mRNA in the retina and SC was constant. Subunit mRNA expression was similar in dark-reared animals, indicating that visual experience has no influence. These experiments suggest that GABA(C) receptor expression in the SC is regulated during postnatal development. While visual experience seems to have no influence on GABA(C) receptor subunits, spontaneous calcium currents selectively promote rho2 expression and both rho1 and rho2 are autoregulated both by GABA(C) receptor activity and by neurotrophic factors.  相似文献   

14.
Gamma-aminobutyric acid Type A (GABAA) receptors are the major sites of synaptic inhibition in the central nervous system. These receptors are thought to be pentameric complexes of homologous transmembrane glycoproteins. Molecular cloning has revealed a multiplicity of different GABAA receptor subunits divided into five classes, alpha, beta, gamma, delta, and rho, based on sequence homology. Within the proposed major intracellular domain of these subunits, there are numerous potential consensus sites for protein phosphorylation by a variety of protein kinases. We have used purified fusion proteins of the major intracellular domain of GABAA receptor subunits produced in Escherichia coli to examine the phosphorylation of these subunits by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). The purified fusion protein of the intracellular domain of the beta 1 subunit was an excellent substrate for both PKA and PKC. PKA and PKC phosphorylated the beta 1 subunit fusion protein on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 409 in the intracellular domain of the beta 1 subunit to an alanine residue eliminated the phosphorylation of the beta 1 subunit fusion protein by both protein kinases. The purified fusion proteins of the major intracellular domain of the gamma 2S and gamma 2L subunits of the GABAA receptor were rapidly and stoichiometrically phosphorylated by PKC but not by PKA. The phosphorylation of the gamma 2S subunit occurred on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 327 of the gamma 2S subunit fusion protein to an alanine residue eliminated the phosphorylation of the gamma 2S fusion protein by PKC. The gamma 2L subunit is an alternatively spliced form of the gamma 2S subunit that differs by the insertion of 8 amino acids (LLRMFSFK) within the major intracellular domain of the gamma 2S subunit. The PKC phosphorylation of the gamma 2L subunit occurred on serine residues on two tryptic phosphopeptides. Site-specific mutagenesis of serine 343 within the 8-amino acid insert to an alanine residue eliminated the PKC phosphorylation of the novel site in the gamma 2L subunit. No phosphorylation of a purified fusion protein of the major intracellular loop of the alpha 1 subunit was observed with either PKA or PKC. These results identify the specific amino acid residues within GABAA receptor subunits that are phosphorylated by PKA and PKC and suggest that protein phosphorylation of these sites may be important in regulating GABAA receptor function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Molecular biology of mammalian amino acid receptors   总被引:4,自引:0,他引:4  
The amino acid receptor proteins are ubiquitous transducers of most excitatory and inhibitory synaptic transmission in the brain. In July 1987 two reports appeared describing the molecular cloning of a pair of subunits of the GABAA receptor (7) and one subunit of the glycine receptor (13). These papers sparked wide interest and led quickly to the concept of a ligand-gated receptor-ion channel superfamily that includes nicotinic acetylcholine receptors as well as certain amino acid receptors. The identification of additional subunits of each receptor followed; with the recent cloning of a kainate receptor subunit (14), only the NMDA receptor remains elusive. Several disciplines have been brought to bear on these receptor clones, including in situ hybridization and functional expression in Xenopus laevis oocytes and mammalian cell lines. In this review we compare cloning strategies that have been used for amino acid receptors and discuss structural similarities among the receptor subunits. Two findings that have arisen from molecular cloning and expression of these receptors receive special attention. First, the molecular heterogeneity of GABAA receptors is larger than expected from pharmacological studies of native receptors. Second, although the native receptors are thought to be heterooligomers, much like the model proposed for the nicotinic receptors, some individual amino acid receptor subunits can form functional receptor channels, presumably in a homomeric configuration. This review focuses, therefore, on what we have learned from cloning efforts about amino acid receptors and what might lie ahead in this field.  相似文献   

16.
The majority of fast inhibitory neurotransmission in the CNS is mediated by the GABA type-A (GABAA) receptor, a ligand-gated chloride channel. Of the approximately 20 different subunits composing the hetero-pentameric GABAA receptor, the gamma2 subunit in particular seems to be important in several aspects of GABAA receptor function, including clustering of the receptor at synapses. In this study, we report that the intracellular loop of the gamma2 subunit interacts with itself as well as with gamma1, gamma3 and beta1-3 subunits, but not with the alpha subunits. We further show that gamma2 subunits interact with photolabeled pentameric GABAA receptors composed of alpha1, beta2/3 and gamma2 subunits, and calculate the dissociation constant to be in the micromolar range. By using deletion constructs of the gamma2 subunit in a yeast two-hybrid assay, we identified a 23-amino acid motif that mediates self-association, residues 389-411. We confirmed this interaction motif by inhibiting the interaction in a glutathione-S-transferase pull-down assay by adding a corresponding gamma2-derived peptide. Using similar approaches, we identified the interaction motif in the gamma2 subunit mediating interaction with the beta2 subunit as a 47-amino acid motif that includes the gamma2 self-interacting motif. The identified gamma2 self-association motif is identical to the interaction motif reported between GABAA receptor and GABAA receptor-associated protein (GABARAP). We propose a model for GABAA receptor clustering based on GABARAP and GABAA receptor subunit-subunit interaction.  相似文献   

17.
The three most widely expressed subunits of the GABAA receptor are alpha(1), beta(2), and gamma(2) subunits, and the major isoform in the human brain is a pentameric receptor composed of 2alpha(1)2beta(2)1gamma(2). Previously, we overexpressed the extracellular domain Q28-R248 of GABAA receptor alpha(1) subunit. In the present study, the homologous extracellular domains Q25-G243 of GABAA receptor beta(2) subunit and Q40-G273 of gamma(2) subunit were also obtained through overexpression in Escherichia coli. Successful production of recombinant beta(2) and gamma(2) subunit receptor protein domains facilitates the comparison of structural and functional properties of the three subunits. To this end, the secondary structures of the three fragments were measured using CD spectroscopy and the beta-strand contents calculated to be >30%, indicating a beta-rich structure for all three fragments. In addition, the benzodiazepine (BZ)-binding affinity of the recombinant fragments were measured using fluorescence polarization to be 2.16 microM, 3.63 microM, and 1.34 microM for the alpha(1), beta(2), and gamma(2) subunit fragments, respectively, indicating that all three homomeric assemblies, including that of the beta(2) subunit, generally not associated with BZ binding, can bind BZ in the micromolar range. The finding that the BZ binding affinity of these recombinant domains was highest for the gamma(2) subunit and lowest for the beta(2) subunit is consistent with results from previous binding studies using hetero-oligomeric receptors. The present results exemplify the effective approach to characterize and compare the three major subunits of the GABAA receptor, for two of which the overexpression in E. coli is reported for the first time.  相似文献   

18.
Ionotropic gamma-aminobutyric acid (GABA(A) and GABA(C)) receptors mediate fast synaptic inhibition in the central nervous system. GABA(C) receptors are expressed predominantly in the retina on bipolar cell axon terminals, and are thought to mediate feedback inhibition from GABAergic amacrine cells. Utilizing the yeast two-hybrid system, we previously identified MAP1B as a binding partner of the GABA(C) receptor rho1 subunit. Here we describe the isolation of an additional rho1 interacting protein: a novel C-terminal variant of the glycine transporter GLYT-1. We show that GLYT-1 exists as four alternatively spliced mRNAs which encode proteins expressing one of two possible intracellullar N- and C-terminal domains. Variants containing the novel C terminus efficiently transport glycine when expressed in COS cells, but with unusual kinetics. We have confirmed the interaction between the novel C terminus and rho1 subunit and demonstrated binding in heterologous cells. This interaction may be crucial for the integration of GABAergic and glycinergic neurotransmission in the retina.  相似文献   

19.
The unique cytoplasmic loop regions of the alpha 1, alpha 2, alpha 3, and alpha 5 subunits of the GABAA receptor were expressed in bacterial and used to produce subunit-specific polyclonal antisera. Antibodies immobilized on protein A-Sepharose were used to isolate naturally occurring alpha-specific populations of GABAA receptors from rat brain that retained the ability to bind [3H]muscimol, [3H]flunitrazepam, [3H]Ro15-1788, and [125I]iodo-clonazepam with high affinity. Pharmacological characterization of these subtypes revealed marked differences between the isolated receptor populations and was generally in agreement with the reported pharmacological profiles of GABAA receptors in cells transiently transfected with alpha 1 beta 1 gamma 2, alpha 2 beta 1 gamma 2, alpha 3 beta 1 gamma 2, and alpha 5 beta 1 gamma 2 combinations of subunits. Additional subtypes were also identified that bind [3H]muscimol but do not bind benzodiazepines with high affinity. The majority of GABAA receptor oligomers contains only a single type of alpha subunit, and we conclude that alpha 1, alpha 2, alpha 3, and alpha 5 subunits exist in vivo in combination with the beta subunit and gamma 2 subunit.  相似文献   

20.
Structure and subunit composition of GABA(A) receptors.   总被引:4,自引:0,他引:4  
GABA(A) receptors are the major inhibitory neurotransmitter receptors in the brain and are the site of action of many clinically important drugs. These receptors are composed of five subunits that can belong to eight different subunit classes. If all GABA(A) receptor subunits could randomly combine with each other, an extremely large number of GABA(A) receptor subtypes with distinct subunit composition and arrangement would be formed. Depending on their subunit composition, these receptors would exhibit distinct pharmacological and electrophysiological properties. Recent evidence, however, indicates that not all subunits can assemble efficiently with each other and form functional homo- or hetero-oligomeric receptors. In addition, the efficiency of formation of hetero-oligomeric assembly intermediates determines the subunit stoichiometry and subunit arrangement for each receptor and thus further reduces the possible heterogeneity of GABA(A) receptors in the brain. Studies investigating the subunit composition of native GABA(A) receptors support this conclusion, but also indicate that receptors composed of one, two, three, four, or five different subunits might exist in the brain. Using a recently established immunodepletion technique, the subunit composition and quantitative importance of native GABA(A) receptor subtypes can be determined. This information, together with studies on the regional, cellular and subcellular distribution of these receptor subtypes, will be the basis for a rational development of drugs that specifically affect the GABAergic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号