首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ashby''s work on the effects of KCl and NaCl on the resistance to hypotonic hemolysis of K-rich and K-poor erythrocytes has been repeated with great attention to purity of materials and refinement of technique. The results fail to agree with those of Ashby. 1. KCl produces greater loss in resistance to hypotonic hemolysis than does NaCl, irrespective of the species of the animal from which the cells are taken. 2. While cases of an increase in resistance have been encountered in my experiments, they are either very slight, or else the particular determination is subject to very great uncertainty. The great increases in resistance found by Ashby are not even approached in any of the present series of experiments. 3. Ashby''s generalization that KCl and NaCl have opposite effects on red blood cells, and that the sense of these effects depends on whether the cell is K-rich or K-poor is not substantiated.  相似文献   

2.
The results of the study of the inhibiting effect of neutral salts upon the clotting tendency of fibrinogen by thrombin may be summarised as follows: Salts like NaCl and KCl inhibit only weakly. Salts of the same cation (K) with monovalent anions of different ionic radius are the more active the larger the anion (Cl'',Br'',I''). Salts of the same cation with anions of different valency are the more active the higher the charge of the anion (1–1 <1–2 <1–3 <1–4). Salts with the same anion with cations of different valency show stronger inhibition in the case of cations of higher charge (K,Na < Mg••, Ca••, Sr••, Ba••). Salts with the same anion and cations of the same charge, but of different radius, are the more active the larger the cation (but with an inversion between Mg•• and Ca•• in the series of the alkali earths, which is not infrequent in biocolloids). These results show that the clotting of fibrinogen with thrombin is, at least partly, caused by a coacervation process, due to electrostatic attraction between positive and negative groups. Its nature and localisation will be dealt with in the next paper of this series.  相似文献   

3.

Background

It is unknown whether changes in circulating glucose levels due to short-term insulin discontinuation affect left ventricular contractile function in type 2 diabetic patients with (T2D-HF) and without (T2D-nonHF) heart failure.

Materials and Methods

In two randomized cross-over-designed trials, 18 insulin-treated type 2 diabetic patients with (Ejection Fraction (EF) 36±6%, n = 10) (trial 2) and without systolic heart failure (EF 60±3%, n = 8) (trial 1) were subjected to hyper- and normoglycemia for 9–12 hours on two different occasions. Advanced echocardiography, bicycle exercise tests and 6-minute hall walk distance were applied.

Results

Plasma glucose levels differed between study arms (6.5±0.8 mM vs 14.1±2.6 mM (T2D-HF), 5.8±0.4 mM vs 9.9±2.1 mM (T2D-nonHF), p<0.001). Hyperglycemia was associated with an increase in several parameters: maximal global systolic tissue velocity (Vmax) (p<0.001), maximal mitral annulus velocity (S''max) (p<0.001), strain rate (p = 0.02) and strain (p = 0.05). Indices of increased myocardial systolic contractile function were significant in both T2D-HF (Vmax: 14%, p = 0.02; S''max: 10%, p = 0.04), T2D-nonHF (Vmax: 12%, p<0.01; S''max: 9%, p<0.001) and in post exercise S''max (7%, p = 0.049) during hyperglycemia as opposed to normoglycemia. LVEF did not differ between normo- and hyperglycemia (p = 0.17), and neither did peak exercise capacity nor catecholamine levels. Type 2 diabetic heart failure patients'' 6-minute hall walk distance improved by 7% (p = 0.02) during hyperglycemia as compared with normoglycemia.

Conclusions

Short-term hyperglycemia by insulin discontinuation is associated with an increase in myocardial systolic contractile function in type 2 diabetic patients with and without heart failure and with a slightly prolonged walking distance in type 2 diabetic heart failure patients. (Clinicaltrials.gov identifier NCT00653510)  相似文献   

4.
Long term continuous superficial abrasion with abrasive compounds of various degrees of roughness was used over an 11-year period in over 1,500 patients with acne of all types. The following observations were made:• That when a material with a specific abrasive quality is used for a period, desquamation stops despite continued use of the material, and then use of material of the next higher degree of roughness is indicated until the patient''s skin is blackhead-free and minutely flaky.• When long term continuous superficial graded abrasion is used alone or with other treatment, it permits the young patients to outgrow the disease with little or no scarring.• The routine of abrasive washing seems in a large measure to replace the constant fingering of lesions by the patient.• No untoward effects were observed clinically. There was no hyperpigmentation of Negro or Caucasian skins.  相似文献   

5.
In addition to the usually accepted indications for digitalis therapy, we believe there is a group of patients, not having heart failure, who would benefit from digitalis in connection with open operations on the heart. This group includes all adults, all with the tetralogy of Fallot, and all with high pressure ventricular septal defects. Digitalis preparations can be given in the usual digitalizing doses several days before operation to insure the presence of some glycosides at the end of the operation when cardiopulmonary by-pass is discontinued. An additional maintenance dose can be given by the anesthetist at the time of completion of cardiopulmonary by-pass and another dose the evening of operation. If during the immediate postoperative period supraventricular arrhythmia occurs, particularly tachycardia, the ouabain test is extremely useful and safe in determining whether or not more digitalis is needed.  相似文献   

6.
Myocardial ischemia–reperfusion (I/R) causes severe cardiac damage. Although the primary function of oxymyoglobin (Mb) has been considered to be cellular O2 storage and supply, previous research has suggested that Mb is a potentially protective element against I/R injury. However, the mechanism of its protective action is still largely unknown. With a real-time fluorescent technique, we observed that at the onset of ischemia, there was a small burst of superoxide (O2•–) release, as visualized in an isolated rat heart. Thus, we hypothesize that the formation of O2•– correlates to Mb due to a decrease in oxygen tension in the myocardium. Measurement of O2•– production in a Langendorff apparatus was performed using surface fluorometry. An increase in fluorescence was observed during the onset of ischemia in hearts perfused with a solution of hydroethidine, a fluorescent dye sensitive to intracellular O2•–. The increase of fluorescence in the ischemic heart was abolished by a superoxide dismutase mimic, carbon monoxide, or by Mb-knockout gene technology. Furthermore, we identified that O2•– was not generated from the intracellular endothelium but from the myocytes, which are a rich source of Mb. These results suggest that during the onset of ischemia, Mb is responsible for generating O2•–. This novel mechanism may shed light on the protective role of Mb in I/R injury.  相似文献   

7.
8.
Programmed cell death (PCD) is an integrated cellular process occurring in plant growth, development, and defense responses to facilitate normal growth and development and better survival against various stresses as a whole. As universal toxic chemicals in plant and animal cells, reactive oxygen or nitrogen species (ROS or RNS), mainly superoxide anion (O2−•), hydrogen peroxide (H2O2) or nitric oxide (NO), have been studied extensively for their roles in PCD induction. Physiological and genetic studies have convincingly shown their essential roles. However, the details and mechanisms by which ROS and NO interplay and induce PCD are not well understood. Our recent study on Cupressus lusitanica culture cell death revealed the elicitor-induced co-accumulation of ROS and NO and interactions between NO and H2O2 or O2- in different ways to regulate cell death. NO and H2O2 reciprocally enhanced the production of each other whereas NO and O2−• showed reciprocal suppression on each other''s production. It was the interaction between NO and O2- but not between NO and H2O2 that induced PCD, probably through peroxynitrite (ONOO). In this addendum, some unsolved issues in the study were discussed based on recent studies on the complex network of ROS and NO leading to PCD in animals and plants.Key Words: cell death, nitric oxide, reactive oxygen species, interaction, posttranslational modification  相似文献   

9.
Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such “off-pathway” species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2′- and 3′-deoxy (–H) and −amino (–NH2) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3′-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2′-OH making no interaction. Upon S binding, a rearrangement occurs that allows both –OH groups to contact a different active site metal ion, termed MC, to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA''s difficulty in specifying a unique conformation and highlighting Nature''s potential to use local transitions of RNA in complex function.  相似文献   

10.
Metabolic bone disease occurring in renal or intestinal disorders has been reviewed with particular reference to etiological factors.Hyperparathyroidism is seen as a recurring cycle of renal damage—hyperphosphatemia—hypocalcemia—parathyroid stimulation—mobilization of bone calcium and phosphate—renal tubular phosphate rejection. In intestinal cases, the initial stimulus is presumably hypocalcemia.Osteomalacia is seen as resulting from phosphate depletion for the following reasons:1. Experimentally, rickets results from dietary phosphate restriction in rats.2. Such rickets is not prevented by the presence of normally adequate amounts of dietary vitamin D, and may therefore be termed “resistant” in the clinical sense.3. Osteomalacia or rickets in intestinal malabsorption and renal tubular disorders is associated with hypophosphatemia due to excessive fecal or urinary loss.4. Renal tubular rickets has been healed by oral phosphate loading in some studies.5. Acidosis may induce osteomalacic changes, experimentally and clinically (for example, in uretero-sigmoidostomy). Reversal of systemic acidosis with oral bicarbonate has resulted in phosphate retention and a rising serum phosphate in one such case.6. Preliminary data from analysis of full-thickness bone biopsy in two osteomalacic patients shows a significant reduction in calcium and phosphate content.7. Despite the hyperphosphatemia of azotemic renal failure, over-all phosphate depletion may be present in this situation also due to: • Diminished dietary phosphate in low protein diets • Nausea and vomiting • Occasional diarrhea • The use of oral phosphatebinding antacids • Perpetuation of urinary phosphate losses by reduction in proportion of tubular reabsorbed phosphate (secondary hyperparathyroidism) and possibly high filtered load per nephron • Repeated losses of phosphate to bath fluid during dialysis.  相似文献   

11.
目的:探讨早期应用小剂量洋地黄类药物对急性心肌梗死(Acute myocardial infarction,AMI)行经皮冠状动脉介入治疗(Percutaneous coronary intervention,PCI)术后合并心力衰竭患者心率变异性(Heart rate variability,HRV)的影响。方法:入选32例在发病24小时内接受PCI治疗且合并心力衰竭的AMI患者,再灌注后随机分为洋地黄组(西地兰0.2 mg,n=17)和对照组(生理盐水20 m L,n=15)。在用药前、用药后30分钟、用药后3小时、用药后6小时、用药后12小时、用药后24小时进行5分钟HRV分析。结果:1洋地黄组的心率在用药6小时后显著小于对照组(P0.05);2洋地黄组SDNN在用药后3小时-6小时显著大于对照组(P0.05),两组RMSSD比较无显著统计学差别(P0.05);3洋地黄组LFnorm在用药后3小时-6小时显著大于对照组(P0.05);用药3小时后,洋地黄组HFnorm显著大于对照组(P0.05),LF/HF显著小于对照组(P0.05)。结论:小剂量洋地黄可以显著降低AMI PCI术后合并心力衰竭患者的心率、逆转迷走神经与交感神经活性的失衡状态,改善HRV。  相似文献   

12.

Background

New strategies for the treatment of hepatocellular carcinoma (HCC) are needed, given that currently available chemotherapeutics are inefficient. Since tumor growth reflects the net balance between pro-proliferative and death signaling, agents shifting the equilibrium toward the latter are of considerable interest. The TWEAK:Fn14 signaling axis promotes tumor cell proliferation and tumor angiogenesis, while TRAIL:TRAIL-receptor (TRAIL-R) interactions selectively induce apoptosis in malignant cells. Fn14•TRAIL, a fusion protein bridging these two pathways, has the potential to inhibit tumor growth, by interfering with TWEAK:Fn14 signaling, while at the same time enforcing TRAIL:TRAIL-R-mediated apoptosis. Consequently, Fn14•TRAIL''s capacity to inhibit HCC growth was tested.

Results

Fn14•TRAIL induced robust apoptosis of multiple HCC cell lines, while sparing non-malignant hepatocyte cell lines. Differential susceptibility to this agent did not correlate with expression levels of TRAIL, TRAIL-R, TWEAK and Fn14 by these lines. Fn14•TRAIL was more potent than soluble TRAIL, soluble Fn14, or a combination of the two. The requirement of both of Fn14•TRAIL''s molecular domains for function was established using blocking antibodies directed against each of them. Subcutaneous injection of Fn14•TRAIL abrogated HCC growth in a xenograft model, and was well tolerated by the mice.

Conclusions

In this study, Fn14•TRAIL, a multifunctional fusion protein originally designed to treat autoimmunity, was shown to inhibit the growth of HCC, both in vitro and in vivo. The demonstration of this fusion protein’s potent anti-tumor activity suggests that simultaneous targeting of two signaling axes by a single fusion can serve as a basis for highly effective anti-cancer therapies.  相似文献   

13.
A questionnaire comprising case histories was administered to 27 Protestant and 27 Catholic clergymen in the San Diego area to test their attitudes toward the use of birth control, sterilization and abortion in families with specific genetic problems. The responses indicated:• Catholic and Protestant clergymen do not always follow the official positions of their churches in these matters, although the majority of them do.• Protestant clergymen were more likely to approve of birth control, sterilization, and abortion than Catholic clergymen.• The approval responses of Protestant and Catholic clergymen were not greatly influenced by whether the illness variables involved high Mendelian risk, high psychological cost, high social cost, or poor prognosis.• The approval responses of Protestant and Catholic clergymen were not significantly influenced by the socio-ethnic background of the families.  相似文献   

14.
The Na,K-ATPase is of major importance for active ion transport across the sarcolemma and thus for electrical as well as contractile function of the myocardium. Furthermore, it is receptor for digitalis glycosides. In human studies of the regulatory aspects of myocardial Na,K-ATPase concentration a major problem has been to obtain tissue samples. Methodological accomplishments in quantification of myocardial Na,K-ATPase using vanadate facilitated 3H-ouabain binding to intact samples have, however, made it possible to obtain reliable measurements on human myocardial necropsies obtained at autopsy as well as on biopsies of a wet weight of only 1–2 mg obtained during heart catheterisation. However, access to the ultimately, normal, vital myocardial tissue has come from the heart transplantation programs, through which myocardial samples from cardiovascular healthy organ donors have become available. In the present paper we evaluate the various values reported for normal human myocardial Na,K-ATPase concentration, its regulation in heart disease and the association with digitalization. Normal myocardial Na,K-ATPase concentration level is found to be 700 pmol/g wet weight. No major variations were found between or within the walls of the heart ventricles. During the first few years of life a marked decrease in myocardial Na,K-ATPase concentration is followed by a stable level obtained in early adulthood and normally maintained throughout life. In patients with enlarged cardiac x-ray silhouette a significant positive, linear correlation between left ventricular ejection fraction (EF) and Na,K-ATPase concentration was established. A maximum reduction in Na,K-ATPase concentration of 89% was obtained when EF was reduced to 20%. Generally, heart failure associated with heart dilatation, myocardial hypertrophy as well as ischaemic heart disease is associated with reductions in myocardial Na,K-ATPase concentration of around 25%. During digoxin treatment of heart failure patients a further reduction in functional myocardial Na,K-ATPase concentration of 15% has been found. Thus, the total reduction in functional myocardial Na,K-ATPase concentration in digitalised heart failure patients may well be of the magnitude 40%. In conclusion, it has become possible to quantify human myocardial Na,K-ATPase in health and disease. Revealed reductions are in heart failure of importance for contractile function, generation of arrhythmia and for digoxin treatment.  相似文献   

15.
Skeletal muscle weakness is a common finding in patients with chronic heart failure (CHF). This functional deficit cannot be accounted for by muscle atrophy alone, suggesting that the syndrome of heart failure induces a myopathy in the skeletal musculature. To determine whether decrements in muscle performance are related to alterations in contractile protein function, biopsies were obtained from the vastus lateralis muscle of four CHF patients and four control patients. CHF patients exhibited reduced peak aerobic capacity and knee extensor muscle strength. Decrements in whole muscle strength persisted after statistical control for muscle size. Thin filaments and myosin were isolated from biopsies and mechanically assessed using the in vitro motility assay. Isolated skeletal muscle thin-filament function, however, did not differ between CHF patients and controls with respect to unloaded shortening velocity, calcium sensitivity, or maximal force. Similarly, no difference in maximal force or unloaded shortening velocity of isolated myosin was observed between CHF patients and controls. From these results, we conclude that skeletal contractile protein function is unaltered in CHF patients. Other factors, such as a decrease in total muscle myosin content, are likely contributors to the skeletal muscle strength deficit of heart failure.  相似文献   

16.
JGP study shows that the phosphorylation state of cMyBPC modulates the ability of omecamtiv mecarbil to enhance myocardial force generation.

The small molecule omecamtiv mecarbil (OM) is a cardiac-specific myosin activator that is currently undergoing clinical trials for the treatment of heart failure with reduced ejection fraction. In this issue of JGP, Mamidi et al. demonstrate that OM’s ability to increase cardiac force production is altered by the phosphorylation state of cardiac myosin-binding protein C (cMyBPC), a target of β-adrenergic signaling that is often dysregulated in late-stage heart failure patients (1).(Left to right) Ranganath Mamidi, Joshua Holmes, Julian Stelzer, and colleagues reveal that the effects of the heart failure drug OM are modulated by the phosphorylation state of the contractile protein cMyBPC. For example, OM’s ability to increase force generation is significantly blunted in mouse myocardial preparations expressing phosphoablated (SA) rather than WT cMyBPC due to changes in myosin cross-bridge kinetics.OM enhances myocardial force generation by increasing the number of strongly bound myosin cross-bridges (2), partly by slowing ADP release and cross-bridge detachment (3). Though the drug has progressed to phase 3 clinical trials, little is known about how its effects may be influenced by pathophysiological changes in other sarcomeric proteins, such as cMyBPC, that regulate myosin cross-bridges and force production.During exercise or other physiological stresses, adrenaline stimulates the phosphorylation of cMyBPC by PKA, thereby accelerating cross-bridge kinetics and myocardial contractility to meet the increased demand for cardiac output (4). In late-stage heart failure patients, however, β-adrenergic signaling is dysregulated and cMyBPC phosphorylation is greatly reduced. “We wanted to test how the phosphorylation state of cMyBPC would effect OM treatment,” explains Julian Stelzer, a professor at Case Western Reserve University.Stelzer’s team, including cofirst authors Ranganath Mamidi and Joshua Holmes, prepared myocardial tissue from both WT mice and mice expressing a cMyBPC mutant that lacks the three main PKA phosphorylation sites. The researchers treated the preparations with OM and found that the ablation of cMyBPC phosphorylation significantly blunted OM’s ability to increase force production (1).Dephosphorylated cMyBPC is thought to stabilize the super-relaxed state of myosin, in which the head domains are folded back toward the filament backbone and are less available to form active cross-bridges (5). Stelzer and colleagues have previously shown that ablating cMyBPC phosphorylation slows cross-bridge kinetics (6).“This is exacerbated by the addition of OM,” Stelzer says. “It creates an even slower system that limits cross-bridge recruitment, and those that are recruited can’t really be detached.” This may reduce the effectiveness of OM in end-stage heart failure patients with low levels of cMyBPC phosphorylation.In contrast, phosphorylation of cMyBPC by PKA usually accelerates myosin cross-bridge kinetics. However, when Stelzer and colleagues treated their myocardial preparations with both PKA and OM, mimicking the scenario of an early-stage heart failure patient exercising or experiencing stress, the effects of the drug dominated the effects of the kinase.“OM did not allow any acceleration and, in fact, slowed cross-bridge kinetics even further, completely negating the effect of PKA on contractility,” Stelzer says. This could mean that early-stage patients on OM are unable to increase their cardiac output during exercise, elevating the risk of ischemia.New iterations of OM are already being explored as potential next-generation treatments for heart failure. Stelzer says that it will be important to investigate how these drugs interact with cMyBPC and other components of the contractile machinery. In the meantime, Stelzer’s laboratory is focused on developing novel therapeutic approaches involving the direct manipulation of cMyBPC phosphorylation.  相似文献   

17.
18.
Mice over-expressing the α1−subunit (pore) of the L-type Ca2+ channel (α1CTG) by 4months (mo) of age exhibit an enlarged heart, hypertrophied myocytes, increased Ca2+ current and Ca2+ transient amplitude, but a normal SR Ca2+ load. With advancing age (8–11 mo), some mice demonstrate advanced hypertrophy but are not in congestive heart failure (NFTG), while others evolve to frank dilated congestive heart failure (FTG). We demonstrate that older NFTG myocytes exhibit a hypercontractile state over a wide range of stimulation frequencies, but maintain a normal SR Ca2+ load compared to age matched non-transgenic (NTG) myocytes. However, at high stimulation rates (2–4 Hz) signs of diastolic contractile failure appear in NFTG cells. The evolution of frank congestive failure in FTG is accompanied by a further increase in heart mass and myocyte size, and phospholamban and ryanodine receptor protein levels and phosphorylation become reduced. In FTG, the SR Ca2+ load increases and Ca2+ release following excitation, increases further. An enhanced NCX function in FTG, as reflected by an accelerated relaxation of the caffeine-induced Ca2+ transient, is insufficient to maintain a normal diastolic Ca2+ during high rates of stimulation. Although a high SR Ca2+ release following excitation is maintained, the hypercontractile state is not maintained at high rates of stimulation, and signs of both systolic and diastolic contractile failure appear. Thus, the dilated cardiomyopathy that evolves in this mouse model exhibits signs of both systolic and diastolic failure, but not a deficient SR Ca2+ loading or release, as occurs in some other cardiomyopathic models.  相似文献   

19.
Hoogsteen (HG) base pairs (bps) provide an alternative pairing geometry to Watson–Crick (WC) bps and can play unique functional roles in duplex DNA. Here, we use structural features unique to HG bps (syn purine base, HG hydrogen bonds and constricted C1′–C1′ distance across the bp) to search for HG bps in X-ray structures of DNA duplexes in the Protein Data Bank. The survey identifies 106 A•T and 34 G•C HG bps in DNA duplexes, many of which are undocumented in the literature. It also uncovers HG-like bps with syn purines lacking HG hydrogen bonds or constricted C1′–C1′ distances that are analogous to conformations that have been proposed to populate the WC-to-HG transition pathway. The survey reveals HG preferences similar to those observed for transient HG bps in solution by nuclear magnetic resonance, including stronger preferences for A•T versus G•C bps, TA versus GG steps, and also suggests enrichment at terminal ends with a preference for 5′-purine. HG bps induce small local perturbations in neighboring bps and, surprisingly, a small but significant degree of DNA bending (∼14°) directed toward the major groove. The survey provides insights into the preferences and structural consequences of HG bps in duplex DNA.  相似文献   

20.
During the last 20 years multiple roles of the nitric oxide gas (•NO) have been uncovered in plant growth, development and many physiological processes. In seed plants the enzymatic synthesis of •NO is mediated by a nitric oxide synthase (NOS)-like activity performed by a still unknown enzyme(s) and nitrate reductase (NR). In green algae the •NO production has been linked only to NR activity, although a NOS gene was reported for Ostreococcus tauri and O. lucimarinus, no other Viridiplantae species has such gene. As there is no information about •NO synthesis neither for non-vascular plants nor for non-seed vascular plants, the interesting question regarding the evolution of the enzymatic •NO production systems during land plant natural history remains open. To address this issue the endogenous •NO production by protonema was demonstrated using Electron Paramagnetic Resonance (EPR). The •NO signal was almost eliminated in plants treated with sodium tungstate, which also reduced the NR activity, demonstrating that in P. patens NR activity is the main source for •NO production. The analysis with confocal laser scanning microscopy (CLSM) confirmed endogenous NO production and showed that •NO signal is accumulated in the cytoplasm of protonema cells. The results presented here show for the first time the •NO production in a non-vascular plant and demonstrate that the NR-dependent enzymatic synthesis of •NO is common for embryophytes and green algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号