首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 902 毫秒
1.
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.  相似文献   

2.
We investigated the orientation of juvenile pied flycatchers, Ficedula hypoleuca, during autumn migration in south Sweden using orientation cage experiments, to study the relative importance of visual and magnetic information at sunset. We performed cage tests under 12 experimental conditions that manipulated the geomagnetic and visual sunset cues available for orientation: natural clear skies in the local or a vertical magnetic field; simulated total overcast in the local or a vertical magnetic field; natural pattern of skylight polarization and directional information from stars screened off, with the sun's position as normal or shifted 120 degrees anticlockwise with mirrors; reduced polarization in the local or a vertical magnetic field; directions of polarization (e-vector) NE/SW and NW/SE, respectively, in the local or a vertical magnetic field. The pied flycatchers were significantly oriented towards slightly south of west when they could use a combination of skylight and geomagnetic cues. The mean orientation was significantly shifted along with the deflection of the sunset position by mirrors. Reduced polarization had no significant effect on orientation either in the local, or in a vertical, magnetic field. The birds tended to orient parallel with the axis of polarization, but only when the artificial e-vector was aligned NW/SE. The mean orientation under simulated total overcast in a vertical, and in the local, magnetic field was not significantly different from random. It is difficult to rank either cue as dominant over the other and we conclude that both visual and magnetic cues seem to be important for the birds' orientation when caught and tested during active migration. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

3.
The migratory orientation of juvenile white-crowned sparrows, Zonotrichia leucophrys gambelli, was investigated by orientation cage experiments in manipulated magnetic fields performed during the evening twilight period in northwestern Canada in autumn. We did the experiments under natural clear skies in three magnetic treatments: (1) in the local geomagnetic field; (2) in a deflected magnetic field (mN shifted −90°); and (3) after exposure to a deflected magnetic field (mN −90°) for 1 h before the cage experiment performed in the local geomagnetic field at dusk. Subjects showed a mean orientation towards geographical east in the local geomagnetic field, north of the expected migratory direction towards southeast. The sparrows responded consistently to the shifted magnetic field, demonstrating the use of a magnetic compass during their first autumn migration. Birds exposed to a cue conflict for 1 h on the same day before the experiment, and tested in the local geomagnetic field at sunset, showed the same northerly orientation as birds exposed to a shifted magnetic field during the experiment. This result indicates that information transfer occurred between magnetic and celestial cues. Thus, the birds' orientation shifted relative to available sunset and geomagnetic cues during the experimental hour. The mean orientation of birds exposed to deflected magnetic fields prior to and during testing was recorded up to two more times in the local geomagnetic field under natural clear and overcast skies before release, resulting in scattered mean orientations.Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved .  相似文献   

4.
ABSTRACT. Orchestia cavimana Heller (Amphipoda, Talitridae) were shown to orient to the geomagnetic field as well as to an anisotropic light field. When tested in an isotropic light field the orientation in the geomagnetic field was either in or opposite to the compass direction of the light vector of the anisotropic light field in which the animals had lived before the test, and this orientation was upset predictably by changing the magnetic field with Helmholtz coils. The polarity of the reaction in both magnetic orientation and photo-orientation was correlated with pre-experimental water loss. The magnetic orientation of O. cavimana is compared with that of Tenebrio molitor , and its biological significance discussed.  相似文献   

5.
To assess the relative importance of celestial and magnetic cues for orientation at dusk, Australian silvereyes, Zosterops l. lateralis, were subjected to artificial magnetic fields under the natural evening sky, beginning 30 min before sunset. Control birds tested in the local geomagnetic field preferred their normal south-southwesterly migratory direction. Birds tested in a magnetic field with north deflected counterclockwise to 240°WSW showed northeasterly tendencies from the first test onward. Birds subjected to a corresponding clockwise deflection to 120°ESE, in contrast, first showed southerly directions, but from the 7th test onward shifted towards the northwest. Hence, both experimental groups followed the shift in magnetic north, one immediately, the other after a delay. When the birds were later tested in a vertical magnetic field without directional information, the two experimental groups continued in the direction they had preferred in the artificial magnetic fields, presumably by celestial cues alone. This indicates that they had not simply ignored celestial cues, but had recalibrated them according to the altered magnetic fields. The reasons for the initial difference between the two experimental groups remain unclear. Delayed responses to deflections of magnetic north have also been observed in previous studies. They appear to be the main reason why studies that expose birds only once to a cue-conflict situation often seem to indicate a dominance of celestial cues, whereas studies exposing the birds repeatedly usually indicate a dominance of magnetic cues. Accepted: 17 September 1997  相似文献   

6.
Candidatus Magnetoglobus multicellularis’ is the most studied multicellular magnetotactic prokaryote. It presents a light-dependent photokinesis: green light decreases the translation velocity whereas red light increases it, in comparison to blue and white light. The present article shows that radio-frequency electromagnetic fields cancel the light effect on photokinesis. The frequency to cancel the light effect corresponds to the Zeeman resonance frequency (DC magnetic field of 4 Oe and radio-frequency of 11.5 MHz), indicating the involvement of a radical pair mechanism. An analysis of the orientation angle relative to the magnetic field direction shows that radio-frequency electromagnetic fields disturb the swimming orientation when the microorganisms are illuminated with red light. The analysis also shows that at low magnetic fields (1.6 Oe) the swimming orientation angles are well scattered around the magnetic field direction, showing that magnetotaxis is not efficiently in the swimming orientation to the geomagnetic field. The results do not support cryptochrome as being the responsible chromophore for the radical pair mechanism and perhaps two different chromophores are necessary to explain the radio-frequency effects.  相似文献   

7.
Adult bobolinks were tested in a planetarium under patterns of nonrotating artificial stars to determine the influence of natural and modified magnetic fields on their migratory orientation. The modified magnetic field was of the same total intensity as the natural field, but the vertical vector was reversed, causing the resulting total vector to point up and north (compared to the natural northern hemisphere vector pointing down and north). When exposed to the artificial magnetic field, the birds reversed their preferred headings relative to the stellar and geographic references. This response is consistent with the use of an inclination compass. Although 60 % of the individuals reversed their headings the first night, some individuals took up to 5 nights (mean = 2.1 nights).  相似文献   

8.
To assess the role of skylight polarization in the orientation system of a day-migrating bird, Yellow-faced Honeyeaters (Lichenostomus chrysops, Meliphagidae) were tested in funnel cages for their directional preferences. In control tests in the natural local geomagnetic field under the clear natural sky, they preferred their normal migratory course. Manipulations of the e-vector by depolarizing the skylight or rotating the axis of polarization failed to affect the orientation as long as the natural geomagnetic field was present. When deprived of magnetic information, the birds continued in their normal migratory direction as long as they had access to information from the natural sky, or when either the sun or polarized light was available. However, when sun was hidden by clouds, depolarizers caused disorientation. — These findings indicate that polarized skylight can be used for orientation when no other known cues are available. However in the hierarchy of cues of this species, the polarization pattern clearly ranks lower than information from the geomagnetic field.  相似文献   

9.
The Earth's magnetic field and celestial cues provide animals with compass information during migration. Inherited magnetic compass courses are selected based on the angle of inclination, making it difficult to orient in the near vertical fields found at high geomagnetic latitudes. Orientation cage experiments were performed at different sites in high Arctic Canada with adult and young white-crowned sparrows (Zonotrichia leucophrys gambelii) in order to investigate birds' ability to use the Earth's magnetic field and celestial cues for orientation in naturally very steep magnetic fields at and close to the magnetic North Pole. Experiments were performed during the natural period of migration at night in the local geomagnetic field under natural clear skies and under simulated total overcast conditions. The experimental birds failed to select a meaningful magnetic compass course under overcast conditions at the magnetic North Pole, but could do so in geomagnetic fields deviating less than 3 degrees from the vertical. Migratory orientation was successful at all sites when celestial cues were available.  相似文献   

10.
To find out the relative importance of the geomagnetic and solar cues for the orientation at the time of sunset, dunnocks were tested outdoors during the spring migration periods of 1982 and 1983. Experimental magnetic fields were produced by Helmholtz coils. In the various magnetic conditions, the following results were obtained:
  • 1 In the local geomagnetic field, the dunnocks oriented in a seasonally appropriate northerly direction.
  • 2 In a magnetic field the north of which was shifted 120° clock-wise to ESE, the birds showed a corresponding shift in their orientation.
  • 3 In a vertical magnetic field without meaningful directional information, birds previously tested in either the local geomagnetic field or the shifted magnetic field now displayed axially bimodal orientation, with the axes of the two groups differing.
These findings indicate that for migratory dunnocks, the magnetic field plays a dominant role in determining their orientation at the time of sunset, and that magnetic information may affect the dunnocks' response to other directional, presumably solar cues as well.  相似文献   

11.
It is known that magnetic fields affect ants behavior. It has been shown that Solenopsis ants are sensitive to magnetic fields but there is no experimental evidence for magnetic orientation. In this paper experiments were done to verify the magnetic orientation of Solenopsis sp. ants. The spontaneous orientation of ants in a circular arena was studied in two different magnetic conditions: in the natural geomagnetic field and under an altered magnetic field, with the horizontal geomagnetic axis shifted in 90?o. Our results show that ants consistently change their orientation direction when the magnetic field was altered. Axial circular statistics analysis showed that, in the absence of other cues, ants orient spontaneously to the horizontal geomagnetic field axis. The present paper shows for the first time magnetic orientation in Solenopsis sp. ants.  相似文献   

12.
《Animal behaviour》1988,36(3):877-887
The migratory orientation of the robin was tested in shifted magnetic fields during the twilight period after sunset, under clear skies and under simulated total overcast. The horizontal direction of the geomagnetic field was shifted 90° to the right or left in relation to the local magnetic field, without changing either the intensity of the field or its angle of inclination. Experiments were conducted during both spring and autumn, with robins captured as passage migrants at the Falsterbo and Ottenby bird observatories in southern Sweden as test subjects. Generally, the orientation of robins was affected by magnetic shifts compared to controls tested in the natural geomagnetic field. Autumn birds from the two capture sites differed in their responses, probably because of different migratory dispositions and body conditions. The robins most often changed their orientation to maintain their typical axis of migration relative to the shifted magnetic fields. However, preferred directions in relation to the shifted magnetic fields were frequently reverse from normal, or axial rather than unimodal. These results disagree with suggested mechanisms for orientation by visual sunset cues and with the proposed basis of magnetic orientation. They do, however, demonstrate that the geomagnetic field is involved in the sunset orientation of robins, probably in combination with additional visual or non-visual cues that contribute to establish magnetic polarity.  相似文献   

13.
If it is more fundamental to formulate biological expression in terms of electromagnetic fields, does this also imply that living things are especially sensitive to the external electromagnetic environment? Specifically, we examine possible genomic effects due to reversals of the geomagnetic field. To maintain sensitivity following a reversal, the Wiltschko hypothesis for the avian magnetic compass can be subsumed under an NB imprinting paradigm, where N is the horizontal vector pointing to magnetic north and B the geomagnetic field vector. Even with a compass that is invariant under reversals, there are nevertheless potential difficulties due to discontinuities in the magnitude of the field during the transition between one chron and the next. Indeed, transitions may be one reason for other-than-magnetic avian auxiliary compasses. Additional problems may also arise during transitions because of high rates of change in B. However, the largest reported dB/dt (Steens Mountain event) is estimated at 1 /u.T/day, seemingly too small to induce significant Faraday current density. Reversals may have also helped determine the nature of the interaction mechanism between GMF and living systems. Mechanisms based on fixed magnetic moments may not be capable of adapting to the reversal process. A better case can be made for an ion cyclotron resonance interaction. Direct involvement in the cell-signaling activities of biological ions would provide such flexibility, and also point to a broader role for the GMF in modulating CNS function than merely to provide orientation.  相似文献   

14.
To test for the hypothesis that Ctenomys talarum can use the earth's magnetic field for spatial orientation, we carried out field and laboratory experiments to analyse if C. talarum burrows present any geomagnetic orientation in their natural habitat, if C. talarum show any spontaneous directional preference when starting to excavate their burrows and if this subterranean rodent is capable to use the earth's magnetic field to orient towards a goal in a complex maze. No correlation between the burrowing direction and the earth's magnetic field was found. We could not find any evidence for any spontaneous directional preference when starting to excavate the burrows in C. talarum. The change of the horizontal vector of the geomagnetic field did not affect the ability of this rodent to orient towards a goal in an artificial labyrinth. Explanations for these results and other possible mechanisms of orientation that could be used by C. talarum are discussed.  相似文献   

15.
Magnetic orientation of European silver eels(Anguilla anguilla) was tested in an octagonal tank. Orientation was determined from photo-registrations of eel positions in tests performed alternately in the natural magnetic field and a field with the horizontal component rotated 180°. Tests were performed in LD 11 : 13. At a daytime light intensity of 100 lux the fish were diurnally active, while at 0.10 lux crepuscular or nocturnal activity dominated. The eels probably differed in preferred orientation, largely depending on the clockwise or anti-clockwise swimming of some of the animals. Therefore there was no preferred direction common to all eels. The orientation of single eels differed, however, significantly between the two magnetic fields, suggesting that the eels responded to the geomagnetic field.  相似文献   

16.
Magnetoreception is the ability of organisms to perceive magnetic fields in the surrounding environment and changes in its properties such as field direction, intensity and gradient, where the effect on organisms can manifest as an array of reactions. As the magnetic sense is found in many taxa, both evolutionarily young and old, it can be assumed that magnetoreception came into existence as one of the first sensory systems. Many studies on the effect of magnetic fields on fishes have considered both fishes that migrate for long distances and those that are more or less sedentary. Research has focused on tracing the perception of the geomagnetic field by fishes and understanding magnetic fields that are smaller and larger than the ambient Earth's geomagnetic field. The question of the effect of magnetic fields of values higher than the Earth's is gaining importance with the increasing effect of anthropogenic magnetic and electromagnetic fields in aquatic ecosystems. This review draws together the results of studies on the effect and reception of natural and human-generated magnetic fields on fishes at various stages of ontogeny, chronologically arranged from gametes, through embryonic development, embryonic and larval motor function, directional reactions of embryos and larvae, orientation of fishes, to the mechanisms of magnetic field reception. The present state of knowledge indicates a common nature of effect on various ontogenetic stages of fishes. However, understanding of the mechanisms of magnetic sense in fishes and its relevance for ecological outcomes highlights that further progress requires more detailed research.  相似文献   

17.
The avian magnetic compass works as an inclination compass. Instead of using the polarity of the magnetic field to determine direction, birds use the inclination of the dip angle. Consequently, transequatorial migrants have to reverse their response to the magnetic compass after crossing the magnetic equator. When confronted with an artificial magnetic field that reverses the vertical component of the magnetic field, migrants such as the bobolink reverse their headings relative to magnetic north even in the presence of visual cues such as stellar patterns. Bobolinks, which breed in temperate North America and winter in temperate South America, were tested in a planetarium under fixed star patterns in a series of magnetic fields incremented each night from the natural field in the northern hemisphere through an artificial horizontal field to an artificial southern hemisphere magnetic field. The birds maintained a constant heading throughout the experiment and did not reverse direction after the simulated crossing of the magnetic equator as previous experiments predicted. In nature, this response would have meant continuation of their migration flight across the equator and into the opposite hemisphere. The switch from “equatorward” orientation to “poleward” orientation is probably triggered by experience with a horizontal magnetic field and/or visual cues. The ability to maintain an accurate heading while crossing the magnetic equator may be based on the use of visual cues such as the stars.  相似文献   

18.
Experiments were carried out to investigate whether premetamorphic larvae of Boscas newt (Triturus boscai) are capable of using the geomagnetic field for Y-axis orientation (i.e., orientation toward and away from shore). Larvae were trained outdoor in two different training configurations, using one training tank aligned along the magnetic north–south axis, with shore facing north, and another training tank positioned with its length along the east–west axis, with shore located west. After training, premetamorphic newts were tested in an outdoor circular arena surrounded by a pair of orthogonally aligned cube-surface coils used to alter the alignment of the Earths magnetic field. Each newt was tested only once, in one of four magnetic field alignments: ambient magnetic field (i.e., magnetic north at North), and three altered fields (magnetic north rotated to East, West, South). Distributions of magnetic bearings from tested larvae indicated that they oriented bimodally along the magnetic direction of the trained Y-axis. These findings demonstrate that T. boscai larvae are sensitive to the geomagnetic field and can use it for orienting along a learned Y-axis. This study is the first to provide evidence of Y-axis orientation, accomplished by a magnetic compass, in larval urodeles.  相似文献   

19.
The near-stable North-South orientation of the natural geomagnetic field provides an ideal basis for navigation. Sailors have used it since ancient times, animals for much longer. Various mechanisms have developed for this purpose. Experiments have pointed to a connection between orientation in the geomagnetic field and light perception. Such observations are supported by theoretical considerations. The underlying interaction should also modulate the light sensitivity of the visual system. Recently we demonstrated the effect of an oscillating field. Here we report the existence of a weak influence of the static field on visual sensitivity in man. By comparison with control experiments, if the directions of view line and field vector coincide the perception threshold of a light stimulus is slightly but significantly increased. This significance is lost if the view line deviates by 10 degrees from the field direction.  相似文献   

20.
Experiments were carried out to investigate whether Iberian green frog tadpoles Pelophylax perezi (formerly Rana perezi) are able of using the geomagnetic field for y‐axis orientation (i.e. orientation toward and away from shore). Tadpoles were trained outdoor for 5 d, in two different training configurations: (i) a training tank aligned along the magnetic north–south axis, with shore facing south, and (ii) a training tank aligned along the magnetic east–west axis, with shore located east, and similar to the shore–deep water axis (‘y‐axis’) found in their home stream, which flows from south to north. After training, tadpoles were individually tested for magnetic orientation in a water‐filled circular outdoor arena surrounded by a pair of orthogonally aligned cube‐surface‐coils used to alter the alignment of the earth's magnetic field. Tadpoles held in the east–west training tank oriented towards shore, indicating that they were able to distinguish between the shoreward and waterward direction along the y‐axis. Tadpoles trained in the tank that was aligned along the north–south axis showed bimodal magnetic compass orientation along the shore–deep water magnetic axis. These findings provide evidence for the use of magnetic compass cues for y‐axis orientation by P. perezi tadpoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号