首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We analyze the stochastic components of the Robertson–Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity.  相似文献   

3.
Observed phenotypic responses to selection in the wild often differ from predictions based on measurements of selection and genetic variance. An overlooked hypothesis to explain this paradox of stasis is that a skewed phenotypic distribution affects natural selection and evolution. We show through mathematical modeling that, when a trait selected for an optimum phenotype has a skewed distribution, directional selection is detected even at evolutionary equilibrium, where it causes no change in the mean phenotype. When environmental effects are skewed, Lande and Arnold's (1983) directional gradient is in the direction opposite to the skew. In contrast, skewed breeding values can displace the mean phenotype from the optimum, causing directional selection in the direction of the skew. These effects can be partitioned out using alternative selection estimates based on average derivatives of individual relative fitness, or additive genetic covariances between relative fitness and trait (Robertson–Price identity). We assess the validity of these predictions using simulations of selection estimation under moderate sample sizes. Ecologically relevant traits may commonly have skewed distributions, as we here exemplify with avian laying date — repeatedly described as more evolutionarily stable than expected — so this skewness should be accounted for when investigating evolutionary dynamics in the wild.  相似文献   

4.
5.
Although the prisoner's dilemma (PD) has been used extensively to study reciprocal altruism, here we show that the n-player prisoner's dilemma (NPD) is also central to two other prominent theories of the evolution of altruism: inclusive fitness and multilevel selection. An NPD model captures the essential factors for the evolution of altruism directly in its parameters and integrates important aspects of these two theories such as Hamilton's rule, Simpson's paradox, and the Price covariance equation. The model also suggests a simple interpretation of the Price selection decomposition and an alternative decomposition that is symmetrical and complementary to it. In some situations this alternative shows the temporal changes in within- and between-group selection more clearly than the Price equation. In addition, we provide a new perspective on strong vs. weak altruism by identifying their different underlying game structures (based on absolute fitness) and showing how their evolutionary dynamics are nevertheless similar under selection (based on relative fitness). In contrast to conventional wisdom, the model shows that both strong and weak altruism can evolve in periodically formed random groups of non-conditional strategies if groups are multigenerational. An integrative approach based on the NPD helps unify different perspectives on the evolution of altruism.  相似文献   

6.

Background  

Fitness landscapes, the dependences of fitness on the genotype, are of critical importance for the evolution of living beings. Unfortunately, fitness landscapes that are relevant to the evolution of complex biological functions are very poorly known. As a result, the existing theory of evolution is mostly based on postulated fitness landscapes, which diminishes its usefulness. Attempts to deduce fitness landscapes from models of actual biological processes led, so far, to only limited success.  相似文献   

7.
Organisms construct their own environments and phenotypes through the adaptive processes of habitat choice, habitat construction, and phenotypic plasticity. We examine how these processes affect the dynamics of mean fitness change through the environmental change term of the Price Equation. This tends to be ignored in evolutionary theory, owing to the emphasis on the first term describing the effect of natural selection on mean fitness (the additive genetic variance for fitness of Fisher's Fundamental Theorem). Using population genetic models and the Price Equation, we show how adaptive niche constructing traits favorably alter the distribution of environments that organisms encounter and thereby increase population mean fitness. Because niche-constructing traits increase the frequency of higher-fitness environments, selection favors their evolution. Furthermore, their alteration of the actual or experienced environmental distribution creates selective feedback between niche constructing traits and other traits, especially those with genotype-by-environment interaction for fitness. By altering the distribution of experienced environments, niche constructing traits can increase the additive genetic variance for such traits. This effect accelerates the process of overall adaption to the niche-constructed environmental distribution and can contribute to the rapid refinement of alternative phenotypic adaptations to different environments. Our findings suggest that evolutionary biologists revisit and reevaluate the environmental term of the Price Equation: owing to adaptive niche construction, it contributes directly to positive change in mean fitness; its magnitude can be comparable to that of natural selection; and, when there is fitness G × E, it increases the additive genetic variance for fitness, the much-celebrated first term.  相似文献   

8.

Background

The extraordinary diversity characterizing the antibody repertoire is generated by both evolution and lymphocyte development. Much of this diversity is due to the existence of immunoglobulin (Ig) variable region gene segment libraries, which were diversified during evolution and, in higher vertebrates, are used in generating the combinatorial diversity of antibody genes. The aim of the present study was to address the following questions: What evolutionary parameters affect the size and structure of gene libraries? Are the number of genes in libraries of contemporary species, and the corresponding gene locus structure, a random result of evolutionary history, or have these properties been optimized with respect to individual or population fitness? If a larger number of genes or different genome structures do not increase the fitness, then the current structure is probably optimized.

Results

We used a simulation of variable region gene library evolution. We measured the effect of different parameters on gene library size and diversity, and the corresponding fitness. We found compensating relationships between parameters, which optimized Ig library size and diversity.

Conclusions

We conclude that contemporary species' Ig libraries have been optimized by evolution in terms of Ig sequence lengths, the number and diversity of Ig genes, and antibody-antigen affinities.  相似文献   

9.
Interest in eco‐evolutionary dynamics is rapidly increasing thanks to ground‐breaking research indicating that evolution can occur rapidly and can alter the outcome of ecological processes. A key challenge in this sub‐discipline is establishing how important the contribution of evolutionary and ecological processes and their interactions are to observed shifts in population and community characteristics. Although a variety of metrics to separate and quantify the effects of evolutionary and ecological contributions to observed trait changes have been used, they often allocate fractions of observed changes to ecology and evolution in different ways. We used a mathematical and numerical comparison of two commonly used frameworks – the Price equation and reaction norms – to reveal that the Price equation cannot partition genetic from non‐genetic trait change within lineages, whereas the reaction norm approach cannot partition among‐ from within‐lineage trait change. We developed a new metric that combines the strengths of both Price‐based and reaction norm metrics, extended all metrics to analyse community change and also incorporated extinction and colonisation of species in these metrics. Depending on whether our new metric is applied to populations or communities, it can correctly separate intraspecific, interspecific, evolutionary, non‐evolutionary and interacting eco‐evolutionary contributions to trait change.  相似文献   

10.
Transmitted culture can be viewed as an inheritance system somewhat independent of genes that is subject to processes of descent with modification in its own right. Although many authors have conceptualized cultural change as a Darwinian process, there is no generally agreed formal framework for defining key concepts such as natural selection, fitness, relatedness and altruism for the cultural case. Here, we present and explore such a framework using the Price equation. Assuming an isolated, independently measurable culturally transmitted trait, we show that cultural natural selection maximizes cultural fitness, a distinct quantity from genetic fitness, and also that cultural relatedness and cultural altruism are not reducible to or necessarily related to their genetic counterparts. We show that antagonistic coevolution will occur between genes and culture whenever cultural fitness is not perfectly aligned with genetic fitness, as genetic selection will shape psychological mechanisms to avoid susceptibility to cultural traits that bear a genetic fitness cost. We discuss the difficulties with conceptualizing cultural change using the framework of evolutionary theory, the degree to which cultural evolution is autonomous from genetic evolution, and the extent to which cultural change should be seen as a Darwinian process. We argue that the nonselection components of evolutionary change are much more important for culture than for genes, and that this and other important differences from the genetic case mean that different approaches and emphases are needed for cultural than genetic processes.  相似文献   

11.
An often-returning question for not only HIV-1, but also other organisms, is how predictable evolutionary paths are. The environment, mutational history, and random processes can all impact the exact evolutionary paths, but to which extent these factors contribute to the evolutionary dynamics of a particular system is an open question. Especially in a virus like HIV-1, with a large mutation rate and large population sizes, evolution is expected to be highly predictable if the impact of environment and history is low, and evolution is not neutral. We investigated the effect of environment and mutational history by analyzing sequences from a long-term evolution experiment, in which HIV-1 was passaged on 2 different cell types in 8 independent evolutionary lines and 8 derived lines, 4 of which involved a switch of the environment. The experiments lasted for 240–300 passages, corresponding to approximately 400–600 generations or almost 3 years. The sequences show signs of extensive parallel evolution—the majority of mutations that are shared between independent lines appear in both cell types, but we also find that both environment and mutational history significantly impact the evolutionary paths. We conclude that HIV-1 evolution is robust to small changes in the environment, similar to a transmission event in the absence of an immune response or drug pressure. We also find that the fitness landscape of HIV-1 is largely smooth, although we find some evidence for both positive and negative epistatic interactions between mutations.

Analysis of the longest evolutionary experiment with HIV-1 to-date reveals continuous viral adaptation over several years. The authors quantify the environment-specific mutations that arise and determine the fraction of mutations that co-occur with significantly different frequencies than expected by chance.  相似文献   

12.

Background  

Explaining parasite virulence (harm to the host) represents a major challenge for evolutionary and biomedical scientists alike. Most theoretical models of virulence evolution assume that virulence arises as a direct consequence of host exploitation, the process whereby parasites convert host resources into transmission opportunities. However, infection-induced disease can be immune-mediated (immunopathology). Little is known about how immunopathology affects parasite fitness, or how it will affect the evolution of parasite virulence. Here we studied the effects of immunopathology on infection-induced host mortality rate and lifetime transmission potential – key components of parasite fitness – using the rodent malaria model, Plasmodium chabaudi chabaudi.  相似文献   

13.
14.

Background  

The evolutionary origin of strong altruism (where the altruist pays an absolute cost in terms of fitness) towards non-kin has never been satisfactorily explained since no mechanism (except genetic drift) seems to be able to overcome the fitness disadvantage of the individual who practiced altruism in the first place.  相似文献   

15.
Starting with the Price equation, I show that the total evolutionary change in mean phenotype that occurs in the presence of fitness variation can be partitioned exactly into five components representing logically distinct processes. One component is the linear response to selection, as represented by the breeder's equation of quantitative genetics, but with heritability defined as the linear regression coefficient of mean offspring phenotype on parent phenotype. The other components are identified as constitutive transmission bias, two types of induced transmission bias, and a spurious response to selection caused by a covariance between parental fitness and offspring phenotype that cannot be predicted from parental phenotypes. The partitioning can be accomplished in two ways, one with heritability measured before (in the absence of) selection, and the other with heritability measured after (in the presence of) selection. Measuring heritability after selection, though unconventional, yields a representation for the linear response to selection that is most consistent with Darwinian evolution by natural selection because the response to selection is determined by the reproductive features of the selected group, not of the parent population as a whole. The analysis of an explicitly Mendelian model shows that the relative contributions of the five terms to the total evolutionary change depends on the level of organization (gene, individual, or mated pair) at which the parent population is divided into phenotypes, with each frame of reference providing unique insight. It is shown that all five components of phenotypic evolution will generally have nonzero values as a result of various combinations of the normal features of Mendelian populations, including biparental sex, allelic dominance, inbreeding, epistasis, linkage disequilibrium, and environmental covariances between traits. Additive genetic variance can be a poor predictor of the adaptive response to selection in these models. The narrow-sense heritability sigma2A/sigma2P should be viewed as an approximation to the offspring-parent linear regression rather than the other way around.  相似文献   

16.

Background  

Avida is a computer program that performs evolution experiments with digital organisms. Previous work has used the program to study the evolutionary origin of complex features, namely logic operations, but has consistently used extremely large mutational fitness effects. The present study uses Avida to better understand the role of low-impact mutations in evolution.  相似文献   

17.

Background  

Quantifying the amount of standing genetic variation in fitness represents an empirical challenge. Unfortunately, the shortage of detailed studies of the genetic architecture of fitness has hampered progress in several domains of evolutionary biology. One such area is the study of sexual selection. In particular, the evolution of adaptive female choice by indirect genetic benefits relies on the presence of genetic variation for fitness. Female choice by genetic benefits fall broadly into good genes (additive) models and compatibility (non-additive) models where the strength of selection is dictated by the genetic architecture of fitness. To characterize the genetic architecture of fitness, we employed a quantitative genetic design (the diallel cross) in a population of the seed beetle Callosobruchus maculatus, which is known to exhibit post-copulatory female choice. From reciprocal crosses of inbred lines, we assayed egg production, egg-to-adult survival, and lifetime offspring production of the outbred F1 daughters (F1 productivity).  相似文献   

18.

Background  

Genes are created by a variety of evolutionary processes, some of which generate duplicate copies of an entire gene, while others rearrange pre-existing genetic elements or co-opt previously non-coding sequence to create genes with 'novel' sequences. These novel genes are thought to contribute to distinct phenotypes that distinguish organisms. The creation, evolution, and function of duplicated genes are well-studied; however, the genesis and early evolution of novel genes are not well-characterized. We developed a computational approach to investigate these issues by integrating genome-wide comparative phylogenetic analysis with functional and interaction data derived from small-scale and high-throughput experiments.  相似文献   

19.

Background  

Replicate experiments are often difficult to find in evolutionary biology, as this field is inherently an historical science. However, viruses, bacteria and phages provide opportunities to study evolution in both natural and experimental contexts, due to their accelerated rates of evolution and short generation times. Here we investigate HIV-1 evolution by using a natural model represented by monozygotic twins infected synchronically at birth with an HIV-1 population from a shared blood transfusion source. We explore the evolutionary processes and population dynamics that shape viral diversity of HIV in these monozygotic twins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号