首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.

Background  

The metastatic ability of tumor cells is determined by level of expression of specific genes that may be identified with the aid of cDNA microarray containing thousands of genes and can be used to establish the expression profile of disease related genes in complex biological system.  相似文献   

2.

Background  

Understanding of the genetic architecture of plant UV-B responses allows extensive targeted testing of candidate genes or regions, along with combinations of those genes, for placement in metabolic or signal transduction pathways.  相似文献   

3.

Background  

Schizophrenia is a complex disorder with involvement of multiple genes.  相似文献   

4.

Background  

Direct synthesis of genes is rapidly becoming the most efficient way to make functional genetic constructs and enables applications such as codon optimization, RNAi resistant genes and protein engineering. Here we introduce a software tool that drastically facilitates the design of synthetic genes.  相似文献   

5.

Background  

One of the important goals of microarray research is the identification of genes whose expression is considerably higher or lower in some tissues than in others. We would like to have ways of identifying such tissue-specific genes.  相似文献   

6.

Background  

Microarray technology allows simultaneous measurement of thousands of genes in a single experiment. This is a potentially useful tool for evaluating co-expression of genes and extraction of useful functional and chromosomal structural information about genes.  相似文献   

7.

Background  

Microarray experiments, as well as other genomic analyses, often result in large gene sets containing up to several hundred genes. The biological significance of such sets of genes is, usually, not readily apparent.  相似文献   

8.

Background  

All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage-specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing.  相似文献   

9.
10.
11.
12.

Background  

Earlier methods for detecting major genes responsible for a quantitative trait rely critically upon a well-structured pedigree in which the segregation pattern of genes exactly follow Mendelian inheritance laws. However, for many outcrossing species, such pedigrees are not available and genes also display population properties.  相似文献   

13.
14.
15.

Background  

Microarrays used for gene expression studies yield large amounts of data. The processing of such data typically leads to lists of differentially-regulated genes. A common terminal data analysis step is to map pathways of potentially interrelated genes.  相似文献   

16.

Background  

Normalization of gene expression microarrays carrying thousands of genes is based on assumptions that do not hold for diagnostic microarrays carrying only few genes. Thus, applying standard microarray normalization strategies to diagnostic microarrays causes new normalization problems.  相似文献   

17.
18.

Background  

Existing large-scale metabolic models of sequenced organisms commonly include enzymatic functions which can not be attributed to any gene in that organism. Existing computational strategies for identifying such missing genes rely primarily on sequence homology to known enzyme-encoding genes.  相似文献   

19.

Background  

In contrast to the majority of mammalian genes, imprinted genes are monoallelically expressed with the choice of the active allele depending on its parental origin. Due to their special inheritance patterns, maternally and paternally expressed genes might be under different evolutionary pressure. Here, we aimed at assessing the evolutionary history of imprinted genes.  相似文献   

20.

Background  

In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号