首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyclonal antibodies, as well as monoclonal antibodies are efficacious in providing protective immunity against Francisella tularensis. This study demonstrates the application of phage display libraries for the construction of monoclonal antibodies against F. tularensis. Novel single-chain fragment variable (scFv) antibodies were generated against a whole bacterial lysate of F. tularensis live vaccine strain using the human single fold scFv libraries I (Tomlinson I + J). A total of 20 clones reacted with the bacterial cell lysate. Further, the library contains two clones responsive to recombinant lipoprotein FTT1103Δsignal (F. tularensis subsp. tularensis Schu S4), which was constructed without a signal sequence. These positively-binding scFvs were evaluated by scFv-phage enzyme-linked immunosorbent assay (ELISA). Then, positive scFvs were expressed in a soluble form in Escherichia coli HB2151 and tested for positive scFvs by using scFv-ELISA.  相似文献   

2.
Lee CM  Iorno N  Sierro F  Christ D 《Nature protocols》2007,2(11):3001-3008
Here, we describe a protocol for the selection of human antibody fragments using repertoires displayed on filamentous bacteriophage. Antigen-specific clones are enriched by binding to immobilized antigen, followed by elution and repropagation of phage. After multiple rounds of binding selection, specific clones are identified by ELISA. This article provides an overview of phage display and antibody technology, as well as detailed protocols for the immobilization of antigen, the selection of repertoires on purified or complex antigens and the identification of binders.  相似文献   

3.
Oh MY  Joo HY  Hur BU  Jeong YH  Cha SH 《Gene》2007,386(1-2):81-89
The effect of utilizing Ex12 helper phage, a mutant M13K07 helper having two amber codons at the gIII (gIII-amber), in combination with Escherichia coli host strains belonging to the supE genotype on improving the phage display of antibody fragments was investigated. Because of an inefficient read-through of the UAG codons, Ex12 helper phage produced approximately 10% of the intracellular wt pIII in the supE host cells compared to M13K07. The phage progenies rescued from the supE XL-1 Blue MRF' strain carrying the recombinant phagemid, pCMTG-SP112, by Ex12 helper phage displayed both antibody-DeltapIII fusion and wt pIII at a ratio of 1:1.5, and achieved a 50-fold greater display of the antibody-DeltapIII compared to those obtained by a conventional phage rescue using M13K07. Additionally observed were a 100-fold increase in antigen-binding functionality and a drastic improvement on antigen-specific panning efficiency by the phage progenies. Our approach permits the display of at least one antibody fragment as well as more than one copy of wt pIII on the surface of recombinant phages, and this would make the phagemid-based phage display technology more practical and reliable.  相似文献   

4.
Venezuelan equine encephalitis (VEE) and eastern equine encephalitis (EEE) viruses are important, naturally emerging zoonotic viruses. They are significant human and equine pathogens which still pose a serious public health threat. Both VEE and EEE cause chronic infection in mosquitoes and persistent or chronic infection in mosquito-derived cell lines. In contrast, vertebrate hosts infected with either virus develop an acute infection with high-titer viremia and encephalitis, followed by host death or virus clearance by the immune system. Accordingly, EEE and VEE infection in vertebrate cell lines is highly cytopathic. To further understand the pathogenesis of alphaviruses on molecular and cellular levels, we designed EEE- and VEE-based replicons and investigated their replication and their ability to generate cytopathic effect (CPE) and to interfere with other viral infections. VEE and EEE replicons appeared to be less cytopathic than Sindbis virus-based constructs that we designed in our previous research and readily established persistent replication in BHK-21 cells. VEE replicons required additional mutations in the 5' untranslated region and nsP2 or nsP3 genes to further reduce cytopathicity and to become capable of persisting in cells with no defects in alpha/beta interferon production or signaling. The results indicated that alphaviruses strongly differ in virus-host cell interactions, and the ability to cause CPE in tissue culture does not necessarily correlate with pathogenesis and strongly depends on the sequence of viral nonstructural proteins.  相似文献   

5.
Obtaining antibodies with high affinity and specificity against antigens are required for the development of therapeutic and diagnostic antibodies. In this study, the contributions to binding affinity in the CDR2 and CDR3 regions of two monoclonal antibodies E3.3 and 2H2 were investigated by random mutagenesis in a phage-display synthetic oligonucleotide library. One high-affinity clone (CDR3-30) was obtained with a 3-fold increase of the dissociation constant, resulting from the changes in amino acids at residues 95, 97, and 98 in the CDRH3 region. Analysis of the predicted structure by modeling suggested that the contributions of mutated residues in the CDR3 region to the binding affinity involved not only complementarity between antigen and CDR3, but also interaction between heavy and light chains. The information gained from this study may benefit the design of vaccines and therapeutic antibodies against Japanese encephalitis virus infection.  相似文献   

6.
Venezuelan equine encephalitis (VEE) is a re-emerging, mosquito-borne viral disease with the potential to cause fatal encephalitis in both humans and equids. Recently, detection of endemic VEE caused by enzootic strains has escalated in Mexico, Peru, Bolivia, Colombia and Ecuador, emphasizing the importance of understanding the enzootic transmission cycle of the etiologic agent, VEE virus (VEEV). The majority of work examining the viral determinants of vector infection has been performed in the epizootic mosquito vector, Aedes (Ochlerotatus) taeniorhynchus. Based on the fundamental differences between the epizootic and enzootic cycles, we hypothesized that the virus-vector interaction of the enzootic cycle is fundamentally different from that of the epizootic model. We therefore examined the determinants for VEEV IE infection in the enzootic vector, Culex (Melanoconion) taeniopus, and determined the number and susceptibility of midgut epithelial cells initially infected and their distribution compared to the epizootic virus-vector interaction. Using chimeric viruses, we demonstrated that the determinants of infection for the enzootic vector are different than those observed for the epizootic vector. Similarly, we showed that, unlike A. taeniorhynchus infection with subtype IC VEEV, C. taeniopus does not have a limited subpopulation of midgut cells susceptible to subtype IE VEEV. These findings support the hypothesis that the enzootic VEEV relationship with C. taeniopus differs from the epizootic virus-vector interaction in that the determinants appear to be found in both the nonstructural and structural regions, and initial midgut infection is not limited to a small population of susceptible cells.  相似文献   

7.
Venezuelan equine encephalitis (VEE) virus is a mosquito-borne alphavirus associated with sporadic outbreaks in human and equid populations in the Western Hemisphere. After the bite of an infected mosquito, the virus initiates a biphasic disease: a peripheral phase with viral replication in lymphoid and myeloid tissues, followed by a neurotropic phase with infection of central nervous system (CNS) neurons, causing neuropathology and in some cases fatal encephalitis. The mechanisms allowing VEE virus to enter the CNS are currently poorly understood. Previous data have shown that the virus gains access to the CNS by infecting olfactory sensory neurons in the nasal mucosa of mice. However, at day 5 after inoculation, the infection of the brain is multifocal, indicating that virus particles are able to cross the blood-brain barrier (BBB). To better understand the role of the BBB during VEE virus infection, we used a well-characterized mouse model system. Using VEE virus replicon particles (VRP), we modeled the early events of neuroinvasion, showing that the replication of VRP in the nasal mucosa induced the opening of the BBB, allowing peripherally administered VRP to invade the brain. Peripheral VEE virus infection was characterized by a biphasic opening of the BBB. Further, inhibition of BBB opening resulted in a delayed viral neuroinvasion and pathogenesis. Overall, these results suggest that VEE virus initially enters the CNS through the olfactory pathways and initiates viral replication in the brain, which induces the opening of the BBB, allowing a second wave of invading virus from the periphery to enter the brain.  相似文献   

8.
9.
Many RNA viruses, which replicate predominantly in the cytoplasm, have nuclear components that contribute to their life cycle or pathogenesis. We investigated the intracellular localization of the multifunctional nonstructural protein 2 (nsP2) in mammalian cells infected with Venezuelan equine encephalitis virus (VEE), an important, naturally emerging zoonotic alphavirus. VEE nsP2 localizes to both the cytoplasm and the nucleus of mammalian cells in the context of infection and also when expressed alone. Through the analysis of a series of enhanced green fluorescent protein fusions, a segment of nsP2 that completely localizes to the nucleus of mammalian cells was identified. Within this region, mutation of the putative nuclear localization signal (NLS) PGKMV diminished, but did not obliterate, the ability of the protein to localize to the nucleus, suggesting that this sequence contributes to the nuclear localization of VEE nsP2. Furthermore, VEE nsP2 specifically interacted with the nuclear import protein karyopherin-alpha1 but not with karyopherin-alpha2, -3, or -4, suggesting that karyopherin-alpha1 transports nsP2 to the nucleus during infection. Additionally, a novel nuclear export signal (NES) was identified, which included residues L526 and L528 of VEE nsP2. Leptomycin B treatment resulted in nuclear accumulation of nsP2, demonstrating that nuclear export of nsP2 is mediated via the CRM1 nuclear export pathway. Disruption of either the NLS or the NES in nsP2 compromised essential viral functions. Taken together, these results establish the bidirectional transport of nsP2 across the nuclear membrane, suggesting that a critical function of nsP2 during infection involves its shuttling between the cytoplasm and the nucleus.  相似文献   

10.
Antiidiotypic antibodies (Ab2) are needed as tools for a better understanding of molecular mimicry and the immunological network, and for many potential applications in the biomedical and pharmaceutical field. Antiidiotypic antibodies mimicking carbohydrate or conformational epitopes (Ab2beta) are of considerable interest as surrogate immunogens for cancer vaccination. However, it has so far been difficult and tedious to produce Ab2s to a given antigen. Here we describe a fast and reliable technique for generating large diversities of antiidiotypic single chain antibody fragments from non-immunized phagemid libraries using phage display. Key elements are a specific elution with the original antigen followed by trypsin treatment of the eluted phages in combination with the protease sensitive helperphage KM13. This novel method was compared with various conventional selection and elution methods, including, specific elution with or without trypsin treatment, elution with glycine at pH 2.2 with or without trypsin treatment, and elution by trypsin treatment only. The results clearly show that specific elution in combination with trypsin treatment of the eluted phages is by far superior to the other conventional methods, enabling for the first time the generation of a large variety of Ab2s after only two to three rounds of selection, thereby maintaining maximum diversity. We obtained 28 to 88 antiidiotypes out of 96 tested clones after two to three rounds of selection with a diversity of 55-90 %. This was achieved for two carbohydrate (di-, and tetrasaccharides) and one conformational protein epitope using two large na?ve libraries and their corresponding monoclonal Ab1. The antiidiotypic nature of the selected scFv-phages was verified by ELISA and immunocytochemistry inhibition experiments.  相似文献   

11.
Polyclonal and monoclonal antibodies (MABs) to human laminin-binding protein (LBP) can efficiently block the penetration of some alphaand flaviviruses into the cell. A panel of 13 types of MABs to human recombinant LBP was used for more detailed study of the mechanism of this process. Competitive analysis has shown that MABs to LBP can be divided into six different competition groups. MABs 4F6 and 8E4 classified under competition groups 3 and 4 can inhibit the replication of Venezuelan equine encephalitis virus (VEEV), which is indicative of their interaction with the receptor domain of LBP providing for binding with virions. According to enzyme immunoassay and immunoblotting data, polyclonal anti-idiotypic antibodies to MABs 4F6 and 8E4 modeling paratopes of the LBP receptor domain can specifically interact with VEEV E2 protein and tick-borne encephalitis virus (TBEV) E protein. Mapping of binding sites of MABs 4F6 and 8E4 with LBP by constructing short deletion fragments of the human LBP molecule has shown that MAB 8E4 interacts with the fragment of amino acid residues 187–210, and MAB 4F6 interacts with the fragment of residues 263–278 of LBP protein, which is represented by two TEDWS peptides separated by four amino acid residues. This suggested that the LBP receptor domain interacting with VEEV E2 and TBEV E viral proteins is located at the C-terminal fragment of the LBP molecule. A model of the spatial structure of the LBP receptor domain distally limited by four linear loops (two of which are represented by experimentally mapped regions of amino acid residues 187–210 and 263–278) as well as the central β-folded region turning into the α-helical site including residues 200–216 of the LBP molecule and providing for the interaction with the laminin-1 molecule has been proposed.  相似文献   

12.
MicroRNAs (miRNA) are small RNA (∼22nts) molecules that are expressed endogenously in cells and play an important role in regulating gene expression. Recent studies have shown that cellular miRNA plays a very important role in the pathogenesis of viral infection. Venezuelan equine encephalitis virus (VEEV) is an RNA virus and is a member of the genus Alphavirus in the family Togaviridae. VEEV is infectious in aerosol form and is a potential biothreat agent. In this study, we report for the first time that VEEV infection in mice brain causes modulation of miRNA expression. Pathway analyses showed that majority of these miRNAs are involved in the neuronal development and function. Target gene prediction of the modulated miRNAs correlates with our recently reported mRNA expression in VEEV infected mice brain.  相似文献   

13.
With the long-term goal of generating CMV-resistant transgenic plants using antibody genes, a single-chain variable fragment (scFv) antibody that binds to the cucumber mosaic virus was isolated from a scFv phage display library by four rounds of affinity selection with CMV-Mf as an antigen. The scFv has the identical binding specificity to CMV as a monoclonal antibody that is generated by the hybridoma fusion technique, and recognized purified preparations of CMV isolates belonging to either subgroup I or II in immunoblotting. The nucleotide sequences of the recombinant antibody showed that a heavy chain variable region (V(H)) gene belonged to the VH3 subgroup and the kappa light chain variable region (V kappa) came from the Vkappa4 subgroup. Our results demonstrate that the scFv phage display library, an alternative approach to the traditional hybridoma fusion technique, has a potential applicability in the study of plant virus and plant pathology.  相似文献   

14.
As part of research exploring the feasibility of using antibody fragments to inhibit the growth of organisms implicated in dandruff, we isolated antibody fragments that bind to a cell surface protein of Malassezia furfur in the presence of shampoo. We found that phage display of llama single-domain antibody fragments (VHHs) can be extended to very harsh conditions, such as the presence of shampoo containing nonionic and anionic surfactants. We selected several VHHs that bind to the cell wall protein Malf1 of M. furfur, a fungus implicated in causing dandruff. In addition to high stability in the presence of shampoo, these VHHs are also stable under other denaturing conditions, such as high urea concentrations. Many of the stable VHHs were found to contain arginine at position 44. Replacement of the native amino acid at position 44 with arginine in the most stable VHH that lacked this arginine resulted in a dramatic further increase in the stability. The combination of the unique properties of VHHs together with applied phage display and protein engineering is a powerful method for obtaining highly stable VHHs that can be used in a wide range of applications.  相似文献   

15.
Murine monoclonal antibody 1A4A1 has been shown to recognize a conserved neutralizing epitope of envelope glycoprotein E2 of Venezuelan equine encephalitis virus. It is a potential candidate for development of a second generation antibody for both immunodiagnosis and immunotherapy. In order to minimize the immunogenicity of murine antibodies and to confer human immune effector functions on murine antibodies, a recombinant gene fusion was constructed. It encoded a human IgG1 heavy chain constant region and a single-chain fragment variable antibody of 1A4A1. After expression in bacteria as inclusion bodies, the recombinant antibody was purified and refolded in vitro. The recombinant soluble antibody was demonstrated to retain high antigen-binding affinity to Venezuelan equine encephalitis virus and to possess some human IgG crystallizable fragment domain functions, such as recognition by protein G and human complement C1q binding. On non-reducing and reducing gel electrophoresis analysis of proteolytic fragments of the recombinant antibody, disulfide bond formation was found in the hinge region of the antibody. From these data, it was concluded that the recombinant antibody was capable of antigen recognition, and retained several functional activities. This work forms the basis for characterization of the recombinant antibody as to efficacy in vivo.  相似文献   

16.
17.
Epizootic subtype IAB and IC Venezuelan equine encephalitis viruses (VEEV) readily infect the epizootic mosquito vector Aedes taeniorhynchus. The inability of enzootic subtype IE viruses to infect this mosquito species provides a model system for the identification of natural viral determinants of vector infectivity. To map mosquito infection determinants, reciprocal chimeric viruses generated from epizootic subtype IAB and enzootic IE VEEV were tested for mosquito infectivity. Chimeras containing the IAB epizootic structural gene region and, more specifically, the IAB PE2 envelope glycoprotein E2 precursor gene demonstrated an efficient infection phenotype. Introduction of the PE2 gene from an enzootic subtype ID virus into an epizootic IAB or IC genetic backbone resulted in lower infection rates than those of the epizootic parent. The finding that the E2 envelope glycoprotein, the site of epitopes that define the enzootic and epizootic subtypes, also encodes mosquito infection determinants suggests that selection for efficient infection of epizootic mosquito vectors may mediate VEE emergence.  相似文献   

18.
Murine oncoretroviruses and lentiviruses pseudotyped with envelope proteins of alphaviruses have shown great potential in providing broad-host-range, stable vectors for gene therapy. Unlike vesicular stomatitis virus G protein-pseudotyped vectors, they are not neutralized by complement and do not appear to cause significant tissue damage. Here we report the production of murine oncoretroviral and lentiviral vectors pseudotyped with the envelope proteins of Venezuelan equine encephalitis virus (VEEV). When optimized, these pseudotypes achieve titers of 106 CFU/ml, which is 5- to 10-fold higher than for previous vectors pseudotyped with envelope proteins from other alphaviruses. They can also be concentrated or stored frozen without significant loss of infectivity. Consistent with the tropism of the envelope donor, they transduce a broad array of human cell types, including lung epithelial cells, neuronal cells, lymphocytes, and fibroblasts. Infection is blocked by agents that inhibit endosomal acidification and by neutralizing antibodies against VEEV. These observations indicate that the pseudotypes present native epitopes on their surface and enter through a VEEV envelope-dependent, pH-sensitive mechanism. The fact that the pseudotypes are unaffected by sera reactive to other alphaviruses indicates that they may be useful when successive gene therapies are required in the presence of an active immune response. In this case, having an array of alphavirus-based vectors with similar cell tropisms would be highly advantageous. These vectors may also be useful in diagnostic assays in which infectious VEEV is undesirable but immune reactivity to native epitopes is required.  相似文献   

19.
20.
The MMP-11 proteinase, also known as stromelysin-3, probably plays an important role in human cancer because MMP-11 is frequently overexpressed in human tumors and MMP-11 levels affect tumorogenesis in mice. Unlike other MMPs, however, human MMP-11 does not cleave extracellular matrix proteins, such as collagen, laminin, fibronectin, and elastin. To help identify physiologic MMP-11 substrates, a phage display library was used to find peptide substrates for MMP-11. One class of peptides containing 26 members had the consensus sequence A(A/Q)(N/A) downward arrow (L/Y)(T/V/M/R)(R/K), where downward arrow denotes the cleavage site. This consensus sequence was similar to that for other MMPs, which also cleave peptides containing Ala in position 3, Ala in position 1, and Leu/Tyr in position 1', but differed from most other MMP substrates in that proline was rarely found in position 3 and Asn was frequently found in position 1. A second class of peptides containing four members had the consensus sequence G(G/A)E downward arrow LR. Although other MMPs also cleave peptides with these residues, other MMPs prefer proline at position 3 in this sequence. In vitro assays with MMP-11 and representative peptides from both classes yielded modest kcat/Km values relative to values found for other MMPs with their preferred peptide substrates. These reactions also showed that peptides with proline in position 3 were poor substrates for MMP-11. A structural basis for the lower kcat/Km values of human MMP-11, relative to other MMPs, and poor cleavage of position 3 proline substrates by MMP-11 is provided. Taken together, these findings explain why MMP-11 does not cleave most other MMP substrates and predict that MMP-11 has unique substrates that may contribute to human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号