首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane permeability commonly shared among arginine-rich peptides   总被引:5,自引:0,他引:5  
Delivery of proteins and other macromolecules using membrane-permeable carrier peptides is a recently developed novel technology, which enables us to modulate cellular functions for biological studies with therapeutic potential. One of the most often used carrier peptides is the arginine-rich basic peptide derived from HIV-1 Tat protein [HIV-1 Tat (48-60)]. Using this peptide, efficient intracellular delivery of molecules including proteins, oligonucleic acids and liposomes has been achieved. We have demonstrated that these features were commonly shared among many arginine-rich peptides such as HIV-1 Rev (34-50) and octaarginine. Not only the linear peptides but also branched-chain peptides showed efficient internalization with an optimum number of arginines (approximately eight residues). The structural and mechanistic features of the translocation of these membrane-permeable arginine-rich peptides are reviewed.  相似文献   

2.
The study and exploitation of cell-penetrating peptides (CPPs) now extends into a third exciting decade. Pharmacokinetic modulators, including the more common sequences Tat, penetratin and transportan-10, markedly enhance the intracellular delivery of small drugs, peptides, oligonucleotides and proteins. We introduced the term bioportide to distinguish cell penetrant peptides with intrinsic bioactivities from more typically inert CPP vectors. Our first examples included rhegnylogically organised bioportides, monomeric peptides presenting pharmacophores for both cellular internalization and bioactivity discontinuously distributed within the primary sequence. However, it is conceptually expedient to employ the same terminology to encompass s ychnologic bioportides that comprise an inert CPP vector conjugated to an otherwise impermeable bioactive peptide. In such cases the CPP provides an obvious address function whilst the bioactive cargo, often a protein mimetic sequence, is the message. Additional targeting sequences, usually added as chimeric extensions, can also be accommodated within the design of CPPs and bioportides to enable cell- and tissue-selective targeting. Thus, the identification and exploitation of bioportides provides further scope to employ CPPs as research tools, diagnostics and therapeutics spanning a range of pathologies.  相似文献   

3.
Chugh A  Eudes F 《The FEBS journal》2008,275(10):2403-2414
The uptake of five fluorescein labeled cell-penetrating peptides (Tat, Tat(2), mutated-Tat, peptide vascular endothelial-cadherin and transportan) was studied in wheat immature embryos. Interestingly, permeabilization treatment of the embryos with toluene/ethanol (1 : 20, v/v with permeabilization buffer) resulted in a remarkably higher uptake of cell-penetrating peptides, whereas nonpermeabilized embryos failed to show significant cell-penetrating peptide uptake, as observed under fluorescence microscope and by fluorimetric analysis. Among the cell-penetrating peptides investigated, Tat monomer (Tat) showed highest fluorescence uptake (4.2-fold greater) in permeabilized embryos than the nonpermeabilized embryos. On the other hand, mutated-Tat serving as negative control did not show comparable fluorescence levels even in permeabilized embryos. A glucuronidase histochemical assay revealed that Tat peptides can efficiently deliver functionally active beta-glucuronidase (GUS) enzyme in permeabilized immature embryos. Tat(2)-mediated GUS enzyme delivery showed the highest number of embryos with GUS uptake (92.2%) upon permeabilization treatment with toluene/ethanol (1 : 40, v/v with permeabilization buffer) whereas only 51.8% of nonpermeabilized embryos showed Tat(2)-mediated GUS uptake. Low temperature, endocytosis and macropinocytosis inhibitors reduced delivery of the Tat(2)-GUS enzyme cargo complex. The results suggest that more than one mechanism of cell entry is involved simultaneously in cell-penetrating peptide-cargo uptake in wheat immature embryos. We also studied Tat(2)-plasmid DNA (carrying Act-1GUS) complex formation by gel retardation assay, DNaseI protection assay and confocal laser microscopy. Permeabilized embryos transfected with Tat(2)-plasmid DNA complex showed 3.3-fold higher transient GUS gene expression than the nonpermeabilized embryos. Furthermore, addition of cationic transfecting agent Lipofectamine 2000 to the Tat(2)-plasmid DNA complex resulted in 1.5-fold higher transient GUS gene expression in the embryos. This is the first report demonstrating translocation of various cell-penetrating peptides and their potential to deliver macromolecules in wheat immature embryos in the presence of a cell membrane permeabilizing agent.  相似文献   

4.
Lei Y  Tang H  Yao L  Yu R  Feng M  Zou B 《Bioconjugate chemistry》2008,19(2):421-427
Fluorescent quantum dots have great potential in cellular labeling and tracking. Here, PEG encapsulated CdSe/ZnS quantum dots have been conjugated with Tat peptide, and introduced into living mesenchymal stem cells. The Tat peptide conjugated quantum dots in mesenchymal stem cells were assessed by fluorescent microscopy, laser confocal microscope and. flow cytometry. The result shows that Tat peptide conjugated quantum dots could enter mesenchymal stem cells efficiently. The Tat-quantum dots labeled stem cells were further injected into the tail veins of NOD/SCID beta2 M null mice, and the tissue distribution of these labeled cells in nude mice were examined with fluorescence microscope. The result shows that characteristic fluorescence of quantum dots was observed primarily in the liver, the lung and the spleen, with little or no quantum dots accumulation in the brain, the heart, or the kidney.  相似文献   

5.
Cationic liposomes have been actively used as gene delivery vehicle because of their minimal toxicity, but their relatively low efficiency of gene delivery is the major disadvantage of these vectors. Recently, cysteine residue incorporation to HIV-1 Tat peptide increased liposomemediated transfection compared with unmodified Tat peptide. Therefore, we designed a novel modified Tat peptide having a homodimeric (Tat-CTHD, Tat-NTHD) and closed structure (cyclic Tat) simply by using the disulfide bond between cysteines to develop a more efficient and safe nonviral gene delivery system. The mixing of Tat-CTHD and Tat-NTHD with DNA before mixing with lipofectamine increased the transfection efficiency compared with unmodified Tat peptide and lipofectamine only in MCF-7 breast cancer cells and rat vascular smooth muscle cells. However, cyclic Tat did not show any improvement in the transfection efficiency. In the gel retardation assay, Tat-CTHD and Tat-NTHD showed more strong binding with DNA than unmodified Tat and cyclic Tat peptide. This enhancement was only shown when Tat-CTHD and Tat-NTHD were mixed with DNA before mixing with lipofectamine. The effects of Tat- CTHD and Tat-NTHD were also valid in the experiment using DOTAP and DMRIE instead of lipofectamine. We could not find any significant cytotoxicity in the working concentration and more usage of these peptides. In conclusion, we have designed a novel transfection-enhancing peptide by easy homodimerization of Tat peptide, and the simple mix of these novel peptides with DNA increased the gene transfer of cationic lipids more efficiently with no additional cytotoxicity.  相似文献   

6.
Intracellular enzymes or receptors are interesting targets for thepharmacomodulation of cellular metabolism. We have previously shown thatmodification of relatively long peptides by a palmitoyl-lysine residue couldfacilitate their delivery into the cytoplasm of living cells. Severalpeptides containing pseudosubstrate sequences of protein kinase C (PKC) havebeen evaluated for their ability to modulate phosphorylation of modelsubstrate, neuronal morphology or tumor necrosis factor secretion. In thiswork we have evaluated the effect of palmitoyl-modified PKC-pseudosubstratepeptides on induction of apoptosis. We have established that these peptidesare able to induce apoptosis in different human cell types (primaryfibroblasts, T- and B-lymphocyte cell lines) as assessed by (terminal deoxynucleotidyl transferase dUTP nick-end labelling) and DNAfragmentation. In contrast, control peptides (non-lipidicPKC-pseudosubstrate peptides and irrelevant lipopeptides) had no or littleeffect on programmed cell death. This work highlights the pharmacologicalinterest of lipopeptides and argues in favor of the potential role of PKC(s)in the cell death machinery.  相似文献   

7.
Shen D  Liang K  Ye Y  Tetteh E  Achilefu S 《FEBS letters》2007,581(9):1793-1799
The nuclear internalization of biomolecules by Tat peptide provides a mechanism to deliver drugs to cells. However, translocation of molecular imaging probes to the nucleus may induce undesirable mutagenesis. To assess the feasibility of retaining its cell permeating effect without nuclear translocation, Tat-peptide was conjugated with a somatostatin receptor (STR)-avid ligand (Oct) and labeled with fluorescent dyes. The results show that Tat-Oct-5-FAM (fluorescein 5'-carboxylic acid) remained in the cytoplasm of STR-positive AR42J cells. Co-incubation of Tat-Oct-5-FAM with ATP induced nuclear translocation. These data suggest that both dye and Oct-STR endocytosis complex could modulate nuclear internalization of Tat peptides.  相似文献   

8.
Summary Intracellular enzymes or receptors are interesting targets for the pharmacomodulation of cellular metabolism. We have previously shown that modification of relatively long peptides by a palmitoyl-lysine residue could facilitate their delivery into the cytoplasm of living cells. Several peptides containing pseudosubstrate sequences of protein kinase C (PKC) have been evaluated for their ability to modulate phosphorylation of model substrate, neuronal morphology or tumor necrosis factor secretion. In this work we have evaluated the effect of palmitoyl-modified PKC-pseudosubstrate peptides on induction of apoptosis. We have established that these peptides are able to induce apoptosis in different human cell types (primary fibroblasts, T- and B-lymphocyte cell lines) as assessed by (terminal deoxynucleotidyl transferase dUTP nick-end labelling) and DNA fragmentation. In contrast, control peptides (non-lipidic PKC-pseudosubstrate peptides and irrelevant lipopeptides) had no or little effect on programmed cell death. This work highlights the pharmacological interest of lipopeptides and argues in favor of the potential role of PKC(s) in the cell death machinery. K. Thiam and E. Loing have contributed equally to this work.  相似文献   

9.
The PKC family of serine/threonine kinases have been implicated in a diverse array of cellular responses. Adult cardiac myocytes express multiple PKC isozymes, which participate in the response of muscle cells to extracellular stimuli, modulate contractile properties, and promote cell growth and survival. Recently, the classification of this ubiquitous family of signaling molecules has been expanded from three to four subfamilies. This review will focus on the application of pharmacologic and molecular approaches to explore the biology of cardiac PKC isozymes. The availability of transgenic mice and peptide PKC modulators have been instrumental in identifying target substrates for activated cardiac PKC isozymes, as well as the identification of specific isozymes linked to distinct growth characteristics and cell phenotype. The rapid growth of knowledge in the area of PKC signaling and PKC substrate interactions, may result in the development of therapeutic modalities with the potential to arrest or reverse the progression of cardiovascular diseases.  相似文献   

10.
The PKC family of serine/threonine kinases have been implicated in a diverse array of cellular responses. Adult cardiac myocytes express multiple PKC isozymes, which participate in the response of muscle cells to extracellular stimuli, modulate contractile properties, and promote cell growth and survival. Recently, the classification of this ubiquitous family of signaling molecules has been expanded from three to four subfamilies. This review will focus on the application of pharmacologic and molecular approaches to explore the biology of cardiac PKC isozymes. The availability of transgenic mice and peptide PKC modulators have been instrumental in identifying target substrates for activated cardiac PKC isozymes, as well as the identification of specific isozymes linked to distinct growth characteristics and cell phenotype. The rapid growth of knowledge in the area of PKC signaling and PKC substrate interactions, may result in the development of therapeutic modalities with the potential to arrest or reverse the progression of cardiovascular diseases.  相似文献   

11.
Tat- and Sec-targeting signal peptides are specific for the cognate Tat or Sec pathways. Using two reporter proteins, the specificity and convertibility of a Tat signal peptide were assessed in vivo. The specific substitutions by RK, KR and KK for the RR motif of the TorA signal peptide had no effect on the exclusive Tat-dependent export of colicin V (ColV). By introducing multiple substitutions in a typical Tat signal peptide, altered signal peptides lacking the twin-arginine motif were obtained. Interestingly, some of these signal peptides preserved Tat-pathway targeting capacity, but resulted in a loss of exclusivity. In addition, further increasing the hydrophobicity of the n-region without modifying the h-region converted the Tat signal peptides to Sec signal peptides in the ColV transport. Replacement of positively charged residues in the c-region also abolished the Tat-exclusive targeting of ColV or green fluorescent protein (GFP), but the folded GFP could be transported only through the Tat pathway. These results strongly suggest that the overall hydrophobicity of the n-region is one of the determinants of Tat-targeting exclusivity.  相似文献   

12.
Dendritic cells (DCs) play a pivotal role in both immune tolerance and the initiation of immunological responses. The ability to track DCs in vivo is imperative for the development of DC-based cellular therapies and to advance our understanding of DC function and pathophysiology. Here, we conjugate a cell permeable peptide, Tat, to near-infrared (NIR) emissive polymersomes in order to enable efficient intracellular delivery for future DC tracking with these optical probes. NIR imaging allows quantitative, repetitive, in vivo detection of fluorophore-laden cells, at centimeter tissue depths without disturbing cellular function. Flow cytometry and confocal microscopy results indicate that Tat-mediated polymersome delivery to DCs is concentration and time dependent, resulting in punctate intracellular localization. Further, loading cells with Tat NIR emissive polymersomes does not interfere with cytokine-induced DC maturation and has modest effects on DC viability, but has a significant effect on mature DC-induced activation of naive T cells. We observe significant uptake of NIR emissive polymersomes when conjugated to the peptide, with a lower detection limit of 5000 labeled DCs. The extent of polymersome delivery is estimated as 70 000 +/- 10 000 vesicles/cell, equivalent to 0.7 +/- 0.1 fmol of NIR fluorophore. Our studies will enable future in vivo tracking of ex vivo labeled DCs by NIR fluorescence based imaging.  相似文献   

13.
We have developed a reporter protein system for the experimental verification of twin-arginine signal peptides. This reporter system is based on the Streptomyces coelicolor agarase protein, which is secreted into the growth medium by the twin-arginine translocation (Tat) pathway and whose extracellular activity can be assayed colorimetrically in a semiquantitative manner. Replacement of the native agarase signal peptide with previously characterized twin-arginine signal peptides from other Gram-positive and Gram-negative bacteria resulted in efficient Tat-dependent export of agarase. Candidate twin-arginine signal peptides from archaeal proteins as well as plant thylakoid-targeting sequences were also demonstrated to mediate agarase translocation. A naturally occurring variant signal peptide with an arginine-glutamine motif instead of the consensus di-arginine was additionally recognized as a Tat-targeting sequence by Streptomyces. Application of the agarase assay to previously uncharacterized candidate Tat signal peptides from Bacillus subtilis identified two further probable Tat substrates in this organism. This is the first versatile reporter system for Tat signal peptide identification.  相似文献   

14.
The cellular delivery of various biological compounds has recently been improved by conjugating them to short peptides known as protein transduction domains or cell penetrating peptides. These peptides include Tat, Antennapedia and arginine-rich peptides. The common feature of these peptides is their highly cationic nature. Up to now, the cellular uptake of about 50 different peptides and proteins coupled to Tat or Antennapedia peptides has been reported. The ability to deliver molecules into cells is not limited to peptide moieties, since oligonucleotides, peptide nucleic acids or other low molecular weight entities have been successfully internalized. Moreover, most of these examples have been accompanied by the expected biological response. More surprisingly, the uptake of large structures such as liposomes, phages, nanoparticles or adenoviruses has also been documented. Indeed the mechanism by which these very different entities could enter cells following a putative common pathway appeared more and more intriguing after each new reported example of cellular uptake mediated by these peptides. After a long period of uncertainty regarding the mechanism of entry, data from several groups now argue for an energy-dependent process of entry. The entry of most of these molecules is likely to be inhibited by low temperature incubation or in the presence of various drugs applied to inhibit the energy-dependent pathway of cell entry. Moreover, the binding of the highly cationic Tat peptide to various anionic membrane components probably initiates the first step of the cell internalization process.  相似文献   

15.
The development of peptide-based therapeutics has suffered from challenges associated with delivery to intact tissue. In skin, an array of protein targets resides only tens of micrometers below the surface; however, because of difficulties in traversing the cutaneous barrier, the potentialfor peptide-based therapeutics remains unrealized. We have developed a general approach for topical peptide delivery into skin using releasable protein transduction sequences to enable peptide transport across tissue boundaries. Upon entry into the cell, the disulfide linkage between the peptide transduction sequences and peptide cargo is cleaved, permitting the dissociation of the highly charged peptide transduction sequences from the active peptide. A protype cargo peptide, the hemagglutinin (HA) epitope, was conjugated to a hepta-arginine protein transduction sequence via a releasable disulfide linkage. This construct penetrated the skin to deep dermis within 1 h after topical application. Consistent with the dissociation of the protein transduction and cargo sequences, absorbed protein transduction sequences and HA peptides displayed differential intracellular localization. Reversible protein transduction sequence linkage thus represents a noninvasive platform for tissue delivery of intact peptides with no requirement for viral vectors or parenteral injection and may be of broad utility in molecular therapy.  相似文献   

16.
Translocation through the plasma membrane is a major limiting step for the cellular delivery of macromolecules. A promising strategy to overcome this problem consists in the chemical conjugation (or fusion) to cell penetrating peptides (CPP) derived from proteins able to cross the plasma membrane. A large number of different cargo molecules such as oligonucleotides, peptides, peptide nucleic acids, proteins or even nanoparticles have been internalized in cells by this strategy. One of these translocating peptides was derived from the HIV-1 Tat protein. The mechanisms by which CPP enter cells remain unknown. Recently, convincing biochemical and genetic findings has established that the full-length Tat protein was internalized in cells via the ubiquitous heparan sulfate (HS) proteoglycans. We demonstrate here that the short Tat CPP is taken up by a route that does not involve the HS proteoglycans.  相似文献   

17.
Although many peptides have therapeutic effects against diverse disease, their short half-lives in vivo hurdle their application as drug candidates. To extend the short elimination half-lives of therapeutic peptides, we developed a novel delivery platform for therapeutic peptides using an anti-hapten antibody and its corresponding hapten. We selected cotinine because it is non-toxic, has a well-studied metabolism, and is physiologically absent. We conjugated WKYMVm-NH2, an anti-sepsis therapeutic peptide, to cotinine and showed that the conjugated peptide in complex with an anti-cotinine antibody has a significantly improved in vivo half-life while retaining its therapeutic efficacy. We suggest that this novel delivery platform for therapeutic peptides will be very useful to develop effective peptide therapeutics.  相似文献   

18.
To study the structure relationship of different Tat domains, the full-length Tat protein Tat1-86, the gene product of the first exon Tat1-72 which retains full activity of the protein, and a panel of shorter peptides mimicking different regions of the primary structure of the Tat protein were chemically synthesized by the solid-phase method, using an efficient protocol. Synthetic Tat1-86 and Tat1-72 transactivated beta-galactosidase activity in HeLa cells containing the lacZ gene under the control of the human immunodeficiency virus type 1 long terminal repeat. Analyses of the activity of Tat1-86 and Tat1-72 with the sulfhydryl of cysteine residues free or protected by the acetamidomethyl group showed that only the Tat fragments with deprotected cysteine residues retain transactivation ability. In contrast, peptide Tat1-48 was inactive, with cysteine residues either free or protected. Similarly, other shorter synthetic peptides covering the different Tat domains were inactive. Interestingly, when peptides Tat1-48 and Tat38-60 were used simultaneously, a significant transactivation was obtained. This result suggests that both peptide domains are implicated in transactivation, probably by acting at two different sites. This permits us to propose a fundamentally new step in the understanding of the molecular mechanism of Tat transactivation.  相似文献   

19.
We have synthesized N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-cell penetrating peptide Tat conjugates and evaluated their subcellular distribution in A2780 human ovarian carcinoma cells by confocal fluorescence microscopy and subcellular fractionation. Our data indicate the transport of these conjugates by a single Tat molecule to both the cytoplasm and nucleus via a nonendocytotic and concentration independent process. The uptake was observed to occur within 3 min, as confirmed by live cell microscopy. In contrast, HPMA copolymers lacking the Tat peptide were internalized solely by endocytosis. For the first time, Tat-mediated cytoplasmic delivery of a polymer bound anticancer drug, doxorubicin, was also demonstrated. These findings establish the feasibility of overcoming major cellular and subcellular obstacles to intracellular macromolecular delivery and hold great promise for the development of polymer-based systems for the cytoplasmic delivery of therapeutic molecules.  相似文献   

20.
The peptides comprising the sequence of HIV-1 Tat protein (positions 48-60), Antennapedia (positions 43-58), and HIV-1 Rev protein (positions 34-50) are known to be cell-permeating. In this study, we examined how the distribution of Fab fragments in rats is affected by conjugation with these peptides. Fab fragment was iodinated by a chloramine-T method and then chemically conjugated with cell-permeating peptide. The complex of 125I-Fab and cell-permeating peptide was administered to male rats intravenously at a dose of 1 mg/kg, and whole-body autoradiography was performed at 4 and 24 h after administration. The patterns of distribution of 125I-Fab exhibited remarkable variation depending on the cell-permeating peptide used. In particular, at 4 h, high concentrations of radioactivity were observed in the spleen, adrenal gland, renal medulla, and liver with Rev peptide-Fab complex, in the liver and spleen with Tat peptide-Fab complex, and in the spleen, adrenal gland, and liver with Antennapedia peptide-Fab complex. Even at 24 h, high concentrations of radioactivity were still observed in the spleen and renal medulla of rat with Rev peptide-Fab complex, and in the spleen and renal cortex of rat with Antennapedia peptide-Fab complex. These findings demonstrate that the patterns of distribution of peptide-125I-Fab complexes can be modulated by selection of cell-penetrating peptides. Moreover, the patterns of retention of peptide-125I-Fab complexes in internal organs also differed at 24 h after administration. These findings provide valuable information for the development of novel antibody pharmaceuticals and therapeutic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号