首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of delta isoforms of calcium-calmodulin/dependent protein kinase II (CaMKII) has been reported in mammalian skeletal muscle; however, their functions in this tissue are largely unknown. This study was conducted to determine if deltaCaMKII expression was altered during regeneration of skeletal muscle fibers in two distinct models. In the first model, necrosis and regeneration were induced in quadriceps of normal mice by intramuscular administration of 50% glycerol. Immunostaining and confocal microscopy revealed that deltaCaMKII expression was clearly enhanced in fibers showing centralized nuclei. The second model was the mdx mouse, which undergoes enhanced muscle necrosis and regeneration due to a mutation in the dystrophin gene. sern blot analysis of hind leg extracts from 4 to 6 week old mdx mice revealed that deltaCaMKII content was decreased when compared to age-matched control mice. This loss in delta kinase content was seen in myofibrillar and membrane fractions and was in contrast to unchanged deltaCaMKII levels in cardiac and brain extracts from dystrophic mice. Confocal microscopy of mdx quadriceps and tibialis muscle showed that deltaCaMKII expression was uniformly decreased in most fibers from dystrophic mice; however, enhanced kinase expression was observed in regenerating muscle fibers. These data support a fundamental role for deltaCaMKII in the regeneration process of muscle fibers in normal and mdx skeletal muscle and may have important implications in the reparative process following muscle death.  相似文献   

2.
Fiber replacement has been measured in adult mdx mouse limb skeletal muscles. During the first 10 days after birth all fibers appear normal; between Week 3 and 4 there is massive fiber degeneration followed by regeneration in which close to 100% of the fibers are repaired or replaced. New fibers arising in adult mice are characterized by expression of fetal myosin mRNAs in whole muscle extracts, and by staining of individual fibers with an embryonic myosin heavy chain-specific antibody. By 10 weeks of age new fiber replacement rate, indicated by frequency of fibers reacting with antibody, is reduced to about 10%, and by 1 year of age less than 1% of the fibers are being replaced at rates above control. Total fiber number also remains fairly constant. We conclude that the fibers regenerating up to 10 weeks of age become stabilized and do not undergo further rounds of degeneration and regeneration. This is consistent with the observed benign phenotype of adult mdx animals and with the idea that once-regenerated fibers escape the catastrophic dystrophic phenotype by acquiring a function that compensates for their mdx mutation. The mechanism by which regenerated mdx fibers restore adequate function in the absence of dystrophin may, when understood, provide clues to effective nongenetic interventions for muscular dystrophy in humans where regenerated fibers continue to degenerate and where the disease is often fatal.  相似文献   

3.
4.
Previous studies have shown that calpains are autolytically cleaved during the disease process of mdx dystrophy, a mouse model for Duchenne muscular dystrophy, indicating that calpains may be activated and play a role in proteolysis that occurs in muscular dystrophy (J. Biol. Chem.270(18), 10909–10914, 1995). In the present study, we investigated the location of calpain in dystrophic muscle fibers over the course of mdx dystrophy, to relate the protease distribution to its state of activation, and to determine whether calpain translocation was an early event in mdx dystrophy. Immunolabeling of healthy, fully differentiated muscle fibers showed calpain present throughout the cytosol, but more concentrated near the plasma membrane. However, degenerating mdx fibers did not contain higher concentrations of calpain at the plasma membrane and showed only a homogeneous, cytosolic distribution. Calpain distribution was similarly diffuse in young myotubes and regenerating fibers with increased cytosolic concentration in early myotubes. Calpain distribution in adult mdx tissue was similar to that occurring in healthy, fully differentiated fibers, although adult mdx fibers displayed higher concentrations of membrane-associated calpain than those observed in C57 controls. The association of calpain with the plasma membrane was verified by immunoblots of isolated sarcolemmal membrane from adult mdx and control muscle which showed calpain present predominantly in the cytosol along with some membrane association. Thus, changes in calpain distribution coincide with changes in enzymatic cleavage over the course of mdx dystrophy shown previously. Furthermore, the stages of pathology at which calpain cleavage is least coincides with those stages when calpain is most concentrated at the cell membrane, suggesting that calpain is retained in an inactive form at the plasma membrane.  相似文献   

5.
Dystrophin-deficient muscle undergoes sudden, postnatal onset of muscle necrosis that is either progressive, as in Duchenne muscular dystrophy, or successfully arrested and followed by regeneration, as in most muscles of mdx mice. The mechanisms regulating regeneration in mdx muscle are unknown, although the possibility that there is renewed expression of genes regulating embryonic muscle cell proliferation and differentiation may provide testable hypotheses. Here, we examine the possibility that necrotic and regenerating mdx muscles exhibit renewed or increased expression of PDGF-receptors. PDGF-binding to receptors on muscle has been shown previously to be associated with myogenic cell proliferation and delay of muscle differentiation. We find that PDGF-receptors are present in 4-week-old mdx mice in muscles that undergo brief, reversible necrosis (hindlimb muscles) or progressive necrosis (diaphragm), as well as in 4-week-old control mouse muscles. Immunoblots indicate that the concentrations of PDGF-receptors in 4-week-old dystrophic (necrotic) and control muscles are similar. Prenecrotic, dystrophic fibers and control fibers possess some cell surface labeling of fibers treated with anti-PDGF-receptor and viewed by indirect immunofluorescence. Necrotic fibers in dystrophic muscle show cytoplasmic labeling for PDGF-receptors and labeling of perinuclear regions at the muscle cell surface. Adult dystrophic muscle displays higher concentrations of PDGF-receptor in both regenerated muscle (hindlimb) and progressively necrotic muscle (diaphragm) than found in controls. Anti-PDGF-receptor labeling of regenerated, dystrophic muscle is observed primarily in granules surrounding central nuclei or surrounding nuclei located at the surface of regenerated fibers. No labeling of perinuclear regions of control muscle or prenecrotic fibers was observed. Myonuclei fractionated from adult mdx hindlimb muscles contained no PDGF-receptor, indicating that PDGF-receptor-positive structures are not tightly associated with nuclei or within nuclei. L6 myoblasts show PDGF-receptor distributed diffusely on the cell surface. Stimulation of L6 myoblasts with 10 ng/ml of PDGF-BB causes receptor internalization and concentration in granules at perinuclear regions. Thus, PDGF stimulation of myoblasts causes a redistribution of PDGF-receptors to resemble receptor localization observed during muscle regeneration. These findings implicate PDGF-mediated mechanisms in regeneration of dystrophic muscle.  相似文献   

6.
The onset and progression of skeletal muscle regeneration are controlled by a complex set of interactions between muscle precursor cells and their environment. Decorin is the main proteoglycan present in the extracellular matrix (ECM) of adult muscle while biglycan expression is lower, but both are increased in mdx mice dystrophic muscle. Both of these small leucine-rich proteoglycans (SLRPs) can bind other matrix proteins and to the three TGF-beta isoforms, acting as modulators of their biological activity. We evaluated biglycan and decorin expression in skeletal muscle during barium chloride-induced skeletal muscle regeneration in mice. A transient and dramatic up-regulation of biglycan was associated with newly formed myotubes, whereas decorin presented only minor variations. Studies both in vitro and in intact developing newborn mice showed that biglycan expression is initially high and then decreases during skeletal muscle differentiation and maturation. To further evaluate the role of biglycan during the regenerative process, skeletal muscle regeneration was studied in biglycan-null mice. Skeletal muscle maintains its regenerative capacity in the absence of biglycan, but a delay in regenerated fiber growth and a decreased expression of embryonic myosin were observed despite to normal expression of MyoD and myogenin. Transient up-regulation of decorin during muscle regeneration in these mice may possibly obscure further roles of SLRPs in this process.  相似文献   

7.
Duchenne muscular dystrophy (DMD) is a fatal and crippling disease of skeletal muscle which displays increased fibre turnover and elevated levels of programmed cell death (PCD) in muscle stem cells. Previously we showed that this cell death is inhibited by the growth factor IGF-II. To determine the functional significance of PCD to the dystrophic phenotype, we used a transgene to over-express IGF-II in the mdx mouse. We found that ectopic expression of IGF-II inhibited the elevated PCD observed in skeletal muscles in the absence of functional dystrophin and significantly ameliorates the early gross histopathological changes in skeletal muscles characteristic of the dystrophic phenotype. Replacement of the dystrophin gene abolished abnormal skeletal muscle cell PCD levels in vivo in a dose-dependent manner and in dystrophic SMS cell lines cultured in vitro. Thus elevation of stem cell PCD in dystrophic skeletal muscle is a direct consequence of the loss of functional dystrophin. Together these data demonstrate that elevated skeletal muscle cell PCD is a critical component of dystrophic pathology and is inversely correlated with both dystrophin gene dosage and with muscle fibre pathology. Targeting PCD in dystrophic muscles reduces both PCD and the classical features of dystrophic pathology in the mdx mouse suggesting that IGF-II is a strong candidate for therapeutic intervention in the dystrophinopathies.  相似文献   

8.
We examined whether pathogenesis in dystrophin-deficient (mdx) mice and laminin-alpha2-deficient (dy) mice is ameliorated by bone marrow transplantation (BMT). Green fluorescent protein (GFP) mice were used as donors. In mdx mice, BMT failed to produce any significant differences in muscle pathology, although some GFP-positive fibers with restored dystrophin expression were observed. In contrast, in the dy mice, BMT led to a significant increase in lifespan and an increase in growth rate, muscle strength, and respiratory function. We conclude that BMT improved outcome in dy mice but not mdx mice.  相似文献   

9.
Increased utrophin expression is known to reduce pathology in dystrophin-deficient skeletal muscles. Transgenic over-expression of PGC-1α has been shown to increase levels of utrophin mRNA and improve the histology of mdx muscles. Other reports have shown that PGC-1α signaling can lead to increased oxidative capacity and a fast to slow fiber type shift. Given that it has been shown that slow fibers produce and maintain more utrophin than fast skeletal muscle fibers, we hypothesized that over-expression of PGC-1α in post-natal mdx mice would increase utrophin levels via a fiber type shift, resulting in more slow, oxidative fibers that are also more resistant to contraction-induced damage. To test this hypothesis, neonatal mdx mice were injected with recombinant adeno-associated virus (AAV) driving expression of PGC-1α. PGC-1α over-expression resulted in increased utrophin and type I myosin heavy chain expression as well as elevated mitochondrial protein expression. Muscles were shown to be more resistant to contraction-induced damage and more fatigue resistant. Sirt-1 was increased while p38 activation and NRF-1 were reduced in PGC-1α over-expressing muscle when compared to control. We also evaluated if the use a pharmacological PGC-1α pathway activator, resveratrol, could drive the same physiological changes. Resveratrol administration (100 mg/kg/day) resulted in improved fatigue resistance, but did not achieve significant increases in utrophin expression. These data suggest that the PGC-1α pathway is a potential target for therapeutic intervention in dystrophic skeletal muscle.  相似文献   

10.
Calcineurin activation ameliorates the dystrophic pathology of hindlimb muscles in mdx mice and decreases their susceptibility to contraction damage. In mdx mice, the diaphragm is more severely affected than hindlimb muscles and more representative of Duchenne muscular dystrophy. The constitutively active calcineurin Aalpha transgene (CnAalpha) was overexpressed in skeletal muscles of mdx (mdx CnAalpha*) mice to test whether muscle morphology and function would be improved. Contractile function of diaphragm strips and extensor digitorum longus and soleus muscles from adult mdx CnAalpha* and mdx mice was examined in vitro. Hindlimb muscles from mdx CnAalpha* mice had a prolonged twitch time course and were more resistant to fatigue. Because of a slower phenotype and a decrease in fiber cross-sectional area, normalized force was lower in fast- and slow-twitch muscles of mdx CnAalpha* than mdx mice. In the diaphragm, despite a slower phenotype and a approximately 35% reduction in fiber size, normalized force was preserved. This was likely mediated by the reduction in the area of the diaphragm undergoing degeneration (i.e., mononuclear cell and connective and adipose tissue infiltration). The proportion of centrally nucleated fibers was reduced in mdx CnAalpha* compared with mdx mice, indicative of improved myofiber viability. In hindlimb muscles of mdx mice, calcineurin activation increased expression of markers of regeneration, particularly developmental myosin heavy chain isoform and myocyte enhancer factor 2A. Thus activation of the calcineurin signal transduction pathway has potential to ameliorate the mdx pathophysiology, especially in the diaphragm, through its effects on muscle degeneration and regeneration and endurance capacity.  相似文献   

11.
miR-1, miR-133a, and miR-206 are muscle-specific microRNAs expressed in skeletal muscles and have been shown to contribute to muscle development. To gain insight into the pathophysiological roles of these three microRNAs in dystrophin-deficient muscular dystrophy, their expression in the tibialis anterior (TA) muscles of mdx mice and CXMD(J) dogs were evaluated by semiquantitative RT-PCR and in situ hybridization. Their temporal and spatial expression patterns were also analyzed in C2C12 cells during muscle differentiation and in cardiotoxin (CTX)-injured TA muscles to examine how muscle degeneration and regeneration affect their expression. In dystrophic TA muscles of mdx mice, miR-206 expression was significantly elevated as compared to that in control TA muscles of age-matched B10 mice, whereas there were no differences in miR-1 or miR-133a expression between B10 and mdx TA muscles. On in situ hybridization analysis, intense signals for miR-206 probes were localized in newly formed myotubes with centralized nuclei, or regenerating muscle fibers, but not in intact pre-degenerated fibers or numerous small mononucleated cells, possibly proliferating myoblasts and inflammatory infiltrates. Similar increased expression of miR-206 was also found in C2C12 differentiation and CTX-induced regeneration, in which differentiated myotubes or regenerating fibers showed abundant expression of miR-206. However, CXMD(J) TA muscles contained smaller amounts of miR-206, miR-1, and miR-133a than controls. They exhibited more severe and more progressive degenerative alterations than mdx TA muscles. Taken together, these observations indicated that newly formed myotubes showed markedly increased expression of miR-206, which might reflect active regeneration and efficient maturation of skeletal muscle fibers.  相似文献   

12.
Duchenne muscular dystrophy results from the lack of dystrophin, a cytoskeletal protein associated with the inner surface membrane, in skeletal muscle. The absence of dystrophin induces an abnormal increase of sarcolemmal calcium influx through cationic channels in adult skeletal muscle fibers from dystrophic (mdx) mice. We observed that the activity of these channels was increased after depletion of the stores of calcium with thapsigargin or caffeine. By analogy with the situation observed in nonexcitable cells, we therefore hypothesized that these store-operated channels could belong to the transient receptor potential channel (TRPC) family. We measured the expression of TRPC isoforms in normal and mdx adult skeletal muscles fibers, and among the seven known isoforms, five were detected (TRPC1, 2, 3, 4, and 6) by RT-PCR. Western blot analysis and immunocytochemistry of normal and mdx muscle fibers demonstrated the localization of TRPC1, 4, and 6 proteins at the plasma membrane. Therefore, an antisense strategy was used to repress these TRPC isoforms. In parallel with the repression of the TRPCs, we observed that the occurrence of calcium leak channels was decreased to one tenth of its control value (patch-clamp technique), showing the involvement of TRPC in the abnormal calcium influx observed in dystrophic fibers.  相似文献   

13.
A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice   总被引:23,自引:0,他引:23  
Dystrophin-deficient muscles experience large reductions in expression of nitric oxide synthase (NOS), which suggests that NO deficiency may influence the dystrophic pathology. Because NO can function as an antiinflammatory and cytoprotective molecule, we propose that the loss of NOS from dystrophic muscle exacerbates muscle inflammation and fiber damage by inflammatory cells. Analysis of transgenic mdx mice that were null mutants for dystrophin, but expressed normal levels of NO in muscle, showed that the normalization of NO production caused large reductions in macrophage concentrations in the mdx muscle. Expression of the NOS transgene in mdx muscle also prevented the majority of muscle membrane injury that is detectable in vivo, and resulted in large decreases in serum creatine kinase concentrations. Furthermore, our data show that mdx muscle macrophages are cytolytic at concentrations that occur in dystrophic, NOS-deficient muscle, but are not cytolytic at concentrations that occur in dystrophic mice that express the NOS transgene in muscle. Finally, our data show that antibody depletions of macrophages from mdx mice cause significant reductions in muscle membrane injury. Together, these findings indicate that macrophages promote injury of dystrophin-deficient muscle, and the loss of normal levels of NO production by dystrophic muscle exacerbates inflammation and membrane injury in muscular dystrophy.  相似文献   

14.
Mdx mice uniquely recover from degenerative dystrophic lesions through an intense myoproliferative response. The onset and progression of this process are controlled by a complex set of interactions between myoblasts and their environment. The presence of the extracellular matrix is essential for normal myogenesis. Proteoglycans are abundant components of the extracellular matrix. The synthesis of proteoglycans in mdx mice during skeletal muscle regeneration was evaluated. Incorporation of radioactive sulfate demonstrated a significant increase in the synthesis of several types of proteoglycans in mdx animals compared to age-matched controls. The size and charge of proteoglycans synthesized by the mdx mice remained unchanged. In particular, one of the up-regulated proteoglycans, the small chondroitin/dermatan sulfate proteoglycan decorin which is known to bind and to sequester transforming growth factor-beta, was investigated. Immunocytolocalization and in situ hybridization studies showed that decorin mainly accumulated in the endomysium, i.e. around individual skeletal muscle fibers from M. tibialis anterior and diaphragm.  相似文献   

15.

Background

In dystrophic skeletal muscle, osmotic stimuli somehow relieve inhibitory control of dihydropyridine receptors (DHPR) on spontaneous sarcoplasmic reticulum elementary Ca2+ release events (ECRE) in high Ca2+ external environments. Such ‘uncontrolled’ Ca2+ sparks were suggested to act as dystrophic signals. They may be related to mechanosensitive pathways but the mechanisms are elusive. Also, it is not known whether truncated dystrophins can correct the dystrophic disinhibition.

Methodology/Principal Findings

We recorded ECRE activity in single intact fibers from adult wt, mdx and mini-dystrophin expressing mice (MinD) under resting isotonic conditions and following hyper-/hypo-osmolar external shock using confocal microscopy and imaging techniques. Isotonic ECRE frequencies were small in wt and MinD fibers, but were markedly increased in mdx fibers. Osmotic challenge dramatically increased ECRE activity in mdx fibers. Sustained osmotic challenge induced marked exponential ECRE activity adaptation that was three times faster in mdx compared to wt and MinD fibers. Rising external Ca2+ concentrations amplified osmotic ECRE responses. The eliminated ECRE suppression in intact osmotically stressed mdx fibers was completely and reversibly resuscitated by streptomycine (200 µM), spider peptide GsMTx-4 (5 µM) and Gd3+ (20 µM) that block unspecific, specific cationic and Ca2+ selective mechanosensitive channels (MsC), respectively. ECRE morphology was not substantially altered by membrane stress. During hyperosmotic challenge, membrane potentials were polarised and a putative depolarisation through aberrant MsC negligible excluding direct activation of ECRE through tubular depolarisation.

Conclusions/Significance

Dystrophin suppresses spontaneous ECRE activity by control of mechanosensitive pathways which are suggested to interact with the inhibitory DHPR loop to the ryanodine receptor. MsC-related disinhibition prevails in dystrophic muscle and can be resuscitated by transgenic mini-dystrophin expression. Our results have important implications for the pathophysiology of DMD where abnormal MsC in dystrophic muscle confer disruption of microdomain Ca2+ homeostasis. MsC blockers should have considerable therapeutic potential if more muscle specific compounds can be found.  相似文献   

16.
The absence of dystrophin and resultant disruption of the dystrophin glycoprotein complex renders skeletal muscles of dystrophic patients and dystrophic mdx mice susceptible to contraction-induced injury. Strategies to reduce contraction-induced injury are of critical importance, because this mode of damage contributes to the etiology of myofiber breakdown in the dystrophic pathology. Transgenic overexpression of insulin-like growth factor-I (IGF-I) causes myofiber hypertrophy, increases force production, and can improve the dystrophic pathology in mdx mice. In contrast, the predominant effect of continuous exogenous administration of IGF-I to mdx mice at a low dose (1.0-1.5 mg.kg(-1).day(-1)) is a shift in muscle phenotype from fast glycolytic toward a more oxidative, fatigue-resistant, slow muscle without alterations in myofiber cross-sectional area, muscle mass, or maximum force-producing capacity. We found that exogenous administration of IGF-I to mdx mice increased myofiber succinate dehydrogenase activity, shifted the overall myosin heavy chain isoform composition toward a slower phenotype, and, most importantly, reduced contraction-induced damage in tibialis anterior muscles. The deficit in force-producing capacity after two damaging lengthening contractions was reduced significantly in tibialis anterior muscles of IGF-I-treated (53 +/- 4%) compared with untreated mdx mice (70 +/- 5%, P < 0.05). The results provide further evidence that IGF-I administration can enhance the functional properties of dystrophic skeletal muscle and, compared with results in transgenic mice or virus-mediated overexpression, highlight the disparities in different models of endocrine factor delivery.  相似文献   

17.
Transforming growth factor beta (TGF-beta) and connective tissue growth factor (CTGF) have been described to induce the production of extracellular matrix (ECM) proteins and have been reported to be increased in different fibrotic disorders. Skeletal muscle fibrosis is a common feature of Duchenne muscular dystrophy (DMD). The mdx mouse diaphragm is a good model for DMD since it reproduces the muscle degenerative and fibrotic changes. Fibronectin (FN) and proteoglycans (PG) are some of the ECM proteins upregulated in dystrophic conditions. In view of understanding the fibrotic process involved in DMD we have isolated fibroblasts from dystrophic mdx diaphragms. Here we report that regardless of the absence of degenerative myofibers, adult mdx diaphragm fibroblasts show increased levels of FN and condroitin/dermatan sulfate PGs synthesis. Fibroblasts isolated from non fibrotic tissue, such as 1 week old mice diaphragms or skin, do not present elevated FN levels. Furthermore, mdx fibroblast conditioned media is able to stimulate FN synthesis in control fibroblasts. Autocrine TGF-beta signaling was unaltered in mdx cells. When control fibroblasts are exposed to TGF-beta and CTGF, FN increases as expected. Paradoxically, in mdx cells it decreases in a concentration dependent manner and this decrease is not due to a downregulation of FN synthesis. According to this data we hypothesize that a pathological environment is able to reprogram fibroblasts into an activated phenotype which can be maintained through generations.  相似文献   

18.
We have demonstrated previously that adult human synovial membrane-derived mesenchymal stem cells (hSM-MSCs) have myogenic potential in vitro (De Bari, C., F. Dell'Accio, P. Tylzanowski, and F.P. Luyten. 2001. Arthritis Rheum. 44:1928-1942). In the present study, we have characterized their myogenic differentiation in a nude mouse model of skeletal muscle regeneration and provide proof of principle of their potential use for muscle repair in the mdx mouse model of Duchenne muscular dystrophy. When implanted into regenerating nude mouse muscle, hSM-MSCs contributed to myofibers and to long term persisting functional satellite cells. No nuclear fusion hybrids were observed between donor human cells and host mouse muscle cells. Myogenic differentiation proceeded through a molecular cascade resembling embryonic muscle development. Differentiation was sensitive to environmental cues, since hSM-MSCs injected into the bloodstream engrafted in several tissues, but acquired the muscle phenotype only within skeletal muscle. When administered into dystrophic muscles of immunosuppressed mdx mice, hSM-MSCs restored sarcolemmal expression of dystrophin, reduced central nucleation, and rescued the expression of mouse mechano growth factor.  相似文献   

19.
Recent studies have shown that oxidative stress contributes to the pathogenesis of muscle damage in dystrophic (mdx) mice. In this study we have investigated the role of NADPH oxidase as a source of the oxidative stress in these mice. The NADPH oxidase subunits gp91(phox), p67(phox) and rac 1 were increased 2-3 fold in tibilais anterior muscles from mdx mice compared to wild type. Importantly, this increase occurred in 19 day old mice, before the onset of muscle necrosis and inflammation, suggesting that NADPH oxidase is an important source of oxidative stress in mdx muscle. In muscles from 9 week old mdx mice, gp91(phox) and p67(phox) were increased 3-4 fold and NADPH oxidase superoxide production was 2 times greater than wild type. In single fibers from mdx muscle NADPH oxidase subunits were all located on or near the sarcolemma, except for p67(phox),which was expressed in the cytosol. Pharmacological inhibition of NADPH oxidase significantly reduced the intracellular Ca(2+) rise following stretched contractions in mdx single fibers, and also attenuated the loss of muscle force. These results suggest that NADPH oxidase is a major source of reactive oxygen species in dystrophic muscle and its enhanced activity has a stimulatory effect on stretch-induced Ca(2+) entry, a key mechanism for muscle damage and functional impairment.  相似文献   

20.
In the mdx mice, lack of dystrophin leads to increases in calcium influx and myonecrosis, followed by muscle regeneration. Synapse elimination is faster in mdx than in controls, suggesting that increases in calcium influx during development could be involved. In the present study, we evaluated whether dystrophic fibers display changes in permeability to Evans Blue Dye (EBD) during development of the neuromuscular junction. EBD is a sensitive label for the early detection of increased myofiber permeability and sarcolemmal damage. After intraperitoneal injection of EBD, sternomastoid (STN) and tibialis anterior (T. anterior) muscles were analyzed with fluorescence microscopy. At 01, 07 and 14 days of age, STN and TA mdx myofibers were not stained with EBD. At 21 days of age, positive labeling of TA and STN mdx myofibers was seen, suggesting permeability modification and myonecrosis. Adult muscles showed a decrease (T. anterior) or no changes (STN) in the amount of EBD-positive fibers. These results suggest that there is no sarcolemmal damage detected by EBD during development of dystrophic neuromuscular junctions and other factors may contribute to the earlier synapse elimination seen in dystrophic muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号