首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The mutagenicity of a series of 13 epoxide compounds was studied using a bacterial plate assay system. The histidine-dependent tester strains TA98 (for frameshift mutagens) and TA100 (for base-pair substitution mutagens) of Salmonella typhimurium were used. Mutagenicity was evaluated both with and without the addition of rat liver microsomal extract. Dieldrin, diglycidyl ether of bis phenol A and 3 of its homologues were not mutagenic. Allyl glycidyl ether, n-butyl glycidyl ether, vinyl cyclohexene diepoxide, glycidol, glycidaldehyde, diglycidyl ether, diepoxybutane and diglycidyl ether of substituted glycerine were mutagenic in the TA100 strain, causing reversion of the bacteria to histidine independence. Dose—response curves of the mutagenicity of the latter 4 compounds were obtained. On a molar basis, glycidaldehyde was about 20–50 times more potent in producing mutation that were the other 3 epoxides in the dose—response test. In general, the mutagenicity of the epoxides was not enhanced or diminished by the addition of microsomal extract.  相似文献   

2.
3.
The uptake, metabolism and alkylating properties of the diastereomeric cholesterol epoxides were studied using Chinese hamster lung fibroblasts (V79 cells). Specific emphasis is given to the comparative cyto- and geno-toxic effects of cholesterol 5 beta,6 beta-epoxide (beta CE) and cholesterol 5 alpha,6 alpha-epoxide (alpha CE) and data are provided for the first time indicating that beta CE can induce more 6-thioguanine-resistant cells than alpha CE. Cholesterol 5 beta,6 beta-epoxide induced colonies of cells resistant to 6-thioguanine at 2-3-fold the frequencies observed with the alpha-isomer, but neither compound produced ouabain-resistant colonies. The cytotoxicity (LD50) of alpha CE was estimated to be 45-50 microM whereas beta CE displayed an LD50 of 25-29 microM. Inhibition of DNA synthesis (IC50) was observed over the same dose ranges as the LD50 for each epoxide isomer. The epoxides were assimilated by cells to an equal extent, however, beta CE was metabolized to cholestane 3 beta,5 alpha-6 beta-triol twice as rapidly as the alpha-isomer. Both epoxides reacted with 4-(4'-nitrobenzyl)-pyridine to a similar extent, and with identical nucleophilic selectivity at pH 7.4, but their alkylating activity was estimated on this basis to be two orders of magnitude less than methyl methanesulfonate. Binding experiments with the DNA or cultured V79 cells or with calf-thymus DNA indicated that interactions were noncovalent and DNA binding did not correlate with the potency of the epoxides to induce the 6-thioguanine-resistant phenotype. Our results could be interpreted as indicating that both cholesterol epoxide isomers are weak mutagens or that they might induce some epigenetic event repressing the hypoxanthine guanine-phosphoribosyltransferase gene. The similarity of the epoxides' alkylating activity and their DNA-binding properties are inconsistent with their different potencies in inducing the 6-thioguanine-resistant phenotype, suggesting that the mechanism leading to this phenotype is not necessarily the result of DNA alkylation.  相似文献   

4.
Pressure-treated log growth cultures (14,000 psi equivalent to 966 x 10(5) N/m2 for 4 h) of Saccharomyces cerevisiae were fractionated across a linear Ficoll gradient by zonal rotor centrifugation. This procedure separated the yeast cells on the basis of size and volume into a continuum of cell cycle ages. Cell survival and petite mutation frequency were determined for several zonal fractions. Survival of yeast cells after pressure treatment was maximal in zonal fractions obtained from either the top (single cells in G1) or the botton ("doublets") of the gradient. Intermediate zonal fractions showed more lethality, with minimal survival occurring in zonal fractions containing a large proportion of yeast cells in which buds were just beginning to emerge (initiation of S phase). The petite mutation frequency was minimal in zonal fractions from the top (single cells in G1) and bottom ("doublets") of the gradient. Induction increased to a maximum in those fractions containing cells in S phase.  相似文献   

5.
6.
7.
Thirteen pesticides, aminotriazole, benomyl, captafol, captan, dalapon-Na, dichlorvos, dinobuton, dodine, ioxynil, mecoprop, neburon, picloram and tordon were tested for ability to induce (1) point mutations to 8-azaguanine resistance, (2) mitotic crossing-over, and (3) mitotic non-disjunction and haploidization in Aspergillus nidulans. Tests were performed at three different pHs, i.e. 4.5, 7, 8.2. Three of the pesticides, captan , captafol and dichlorvos induced point mutations; dichlorvos also induced a high frequency of mitotic crossing-over and non-disjunction; benomyl induced a very high frequency of non-disjunction whereas aminotriazole induced weakly both types of somatic segregation.  相似文献   

8.
9.
Alkyl 2-cyanoacrylate adhesives were tested for mutagenicity in Salmonella typhimurium strains TA98, TA100, TA1535 and TA1538. Both a normal spot test and a spot test specially designed to test volatile compounds were used. The adhesives were also tested in the plate incorporation assay. These investigations showed that methyl 2-cyanoacrylate adhesives are mutagenic in strain TA100. The spot test for volatile compounds showed that it is the vapors from the methyl 2-cyanoacrylate monomer that are responsible for the mutagenic effect. One can conclude that working with methyl 2-cyanoacrylate adhesives entails exposure to vapors with a mutagenic effect and may therefore pose a carcinogenic hazard. Because the adhesives are used in industry, their mutagenic effect has a special importance in work environment.  相似文献   

10.
The mutagenic effect of O-methylhydroxylamine (OMHA) on transforming DNA of Bacillus subtilis was studied. In accordance with the earlier reported chemical and functional data, the mutagenic effect was observed at 4.5 and 6.0 pH. An increase in pH caused a decrease in the rate of mutagenesis, though the maximal level of mutagenesis was equal at both values of pH. The results obtained with recipients defective in the system of UV-repair revealed that both products of reaction of OMHA with the cytosine-base of DNA, N4-metoxycytidine and N4-metoxy-6-metoxyamino-5,6-dihydrocytidine, are effectively eliminated through the system of UV repair.  相似文献   

11.
The mutagenic effect of cadmium chloride on somatic cells of F1 hybrid mice CBA X C57B1/6J in vivo and on an established line of CHO-ATZ-2 Chinese hamster cells in vitro has been studied. The induction of micronuclei has been demonstrated in mouse marrow cells as well as induction of point mutations at loci controlling the synthesis of hypoxanthine-phosphoribosyltransferase, thymidine kinase, adenine phosphoribosyltransferase and the resistance of Na+/K+ ATPase to ouabain in the cell line CHO-AT-2. A peak of mutagenic activity under the action of subtoxic doses of cadmium chloride has been revealed.  相似文献   

12.
Phaseolinone was mutagenic to excision-repair-deficient strains of Escherichia coli WP2 and also to Salmonella typhimurium TA 100. The repair test was indicative of covalent binding of the toxin to DNA. The side-chain epoxide and the hydroxy groups of the molecule were found to be essential for mutagenic activity.  相似文献   

13.
Ethanol, ethylene glycol and glycerine induce chromosomal aberrations in cells of the rat bone marrow and disturb a genetic apparatus of male sex cells at the stage of late spermatids. The cytogenetic activity of ethylene glycol depends on its dose. Phenobarbital stimulates the cytogenetic activity of ethanol and ethylene glycol.  相似文献   

14.
Summary Hydroxylamine (HA) in 0.1-2M concentration induces in yeast mutation and recombination. Cell survival, and reversion induction show a striking variation from one experiment to another (Figs. 1, 3). There is no clear-cut dose-dependence (Fig. 2). HA inhibits respiration, alcohol dehydrogenase and catalase activities (Tables 1, 2, 4). However, these effects are at least partly reversed when the HA-treated cells are incubated for 1 h in phosphate buffer (Fig. 4, Tables 3 and 6). Catalase inhibition by 10-2M HA does not induce recombination (Table 5). Acetoxime, pyruvoxime and glucosoxime do not seem to be mutagenic (Table 7).The level of free HA in a homogenate of cells treated for 3 h with 1 M HA, without postincubation in buffer is ca. 10-2M.It is suggested that within the yeast cells HA undergoes decomposition into free radicals and peroxide, which directly or through chain reactions induce DNA damages. The direct reaction of HA with cytosine, if it occurs at all, does not seem to play an important role in HA mutagenesis in yeast.  相似文献   

15.
The lethal and mutagenic effects of 7 alkylating agents: N-nitroso-N-methylurea (NMU), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), nitrogen mustard (HN2), mitomycin C (MC), bifunctional acridine mustard (AM)--and of cyanate (KNCO) on heat inducible lambda cI857 prophage were studied. After treatment of lysogenic cells with mutagens, prophage was heat-induced either immediately or after 90 min incubation in nutrient broth and c mutants forming clear plaques at 32 degrees C were scored. NMU (0.02 M) when immediately induced with heat, induces c mutants very efficiently (maximal yield 10%) not only in the wild-type cells but also in repair-deficient mutants recA13, lexA102, uvrA6 umuC36, recF143, xthA9, polA1, uvrD3 and uvrD502. These data show that NMU-induced mutations are fixed as replication errors due to mispairing modified bases. After delayed heat induction, the prophage survival enhances and the frequency of c mutations declines considerably in host cells of all repair genotypes tested. Carbamoylation is not involved in the mutagenic action of NMU, because KNCO (0.02 M) has a very slight lethal effect and does not induce mutations. MNNG (100 micrograms/ml) and EMS (0.1 M) also induce mutations by replicative mechanism, because maximal yield of c mutations does not depend on RecA+ and is about 15 and 2%, respectively. MMS is a mutagen of the repair type, since its mutagenic action is suppressed by recA mutation of the host. NH2 only inactivates prophage, but does not induce mutations. MC (50 micrograms/ml) and AM (150 micrograms/ml) induce mutations rather inefficiently (the maximal yield 0.1 and 0.3%, respectively) both in recA+ and recA- hosts. The mutagenic action of these agents is probably due to intercalation.  相似文献   

16.
The study on the mutagenic activity of commercial synthetic cationic, anionic, amphoteric and nonionogenic surface active substances with antimicrobial properties demonstrated that they had no mutagenic effect on the microbial test systems, i.e. the histidine-deficient strains of Salmonella typhimurium on direct contact and under conditions of metabolic activation in vitro and in vivo. The cationoactive preparation B Kh-14 with the benzyl radical adjoining the nitrogen atom and linear hydrophobic C13H27 with the amide group having a pronounced antimicrobial effect on gram-positive and gram-negative bacteria and fungi showed no carcinogenic activity in the experiments with its long-term action on the urinary bladder mucosa and skin of rats, guinea-pigs and dogs.  相似文献   

17.
The lethal and mutagenic effects of nitrous acid (0,1 M NaNO2 in 0,1 M acetate buffer, pH 4.6) on prophage lambda cI857 ind- were studied in the wild-type cells of Escherichia coli and in 9 repair-deficient mutants: uvrA6, uvrA6 umuC36, uvrD3, uvrE502, polA1, recA13, lexA102, recF143 and xthA9. After treatment with HNO2, the prophage was heat-induced either immediately or after 90 min incubation in broth at 32 degrees C. The prophage survival after delayed induction was considerably higher than after immediate induction. The lethal action of HNO2 was highly expressed in uvrA- and uvrE- lysogens after delayed induction. The frequency of temperature-independent c mutants forming clear plaques at 32 degrees C reached 4% in the wild-type host after immediate induction, this value being 10-15% in uvrA, uvrA umuC, uvrD, uvrE, polA and xthA mutants, 0,8% in recF- lysogen and only 0,2-0,3% in recA and lexA mutants. Under these conditions, about 90% of c mutants are generated by recA+, lexA+-dependent repair mechanism (most probably, due to W-mutagenesis). After delayed induction, mutation frequency in the wild-type host declines considerably (down to 0,1%). Analogous phenomenon of mutation frequency decline was registered in uvrA, xthA, recF, polA, uvrE and uvrD lysogens. Under conditions of delayed induction, the frequency of HNO2-induced c mutations only slightly depends on the recA+ and lexA+ gene products and mutations are, apparently, fixed by replication.  相似文献   

18.
Induction of direct mutations in the lactose operon of E. coli cells by gamma-radiation and accelerated heavy ions with different LET was studied. The experiments were performed with the wild-type PolA and LexA strains. A quadratic dependence of the mutation rate on the dose of different radiations for the wild-type strain and the PolA mutant was observed. However, different types of radiation showed different relative genetic effectivenesses (RGE). The dependence of RGE on LET for the wild-type and PolA strain has a maximum. A LexA strain showed much reduced mutation rates and a linear dose response. The RGE decreased with increasing LET of ionizing radiation.  相似文献   

19.
Thirteen pesticides, aminotriazole, benomyl, captafol, captan, dalapon-Na, dichlorvos, dinobuton, dodine, ioxynil, mecoprop, neburon, picloram and tordon were tested for ability to induce (1) point mutations to 8-azaguanine resistance, (2) mitotic crossing-over, and (3) mitotic non-disjunction and haploidization in Aspergillus nidulans. Tests were performed at three different pHs, i.e. 4.5, 7, 8.2. Three of the pesticides, captan, captafol and dichlorvos induced point mutations; dichlorvos also induced a high frequency of mitotic crossing-over and non-disjunction; benomyl induced a very high frequency of non-disjunction whereas aminotriazole induced weakly both types of somatic segregation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号