首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Nuclei and non-nuclear membranes were tested for their ability to transfer in vitro (14C)mannose from GDP-(14C)mannose to endogenous glycoprotein acceptors in the presence and in the absence of exogenous retinyl-phosphate. Electrophoretic analysis shows that retinylphosphate is responsible for the labeling of a few endogenous acceptors only in the non-nuclear membranes; in the nuclei the mannosylation reaction is not retinylphosphate dependent and the electrophoretic profile of the labeled protein acceptors is different from that of the non-nuclear membranes.  相似文献   

2.
  • 1.1. The presence of glycoproteins within the nucleus of cell is now well established and the question arises on the nature of the nuclear glycosylation and the site of their glycosylation.
  • 2.2. In order to study endogenous nuclear proteins acceptors, we have isolated a subnuclear fraction: nuclear matrix characterized by DNA, RNA, phospholipids and proteins content. Nuclear matrix acceptors were obtained from nuclei incubated with UDP-N-acetyl [14C]glucosamine.
  • 3.3. In this report we describe the presence of three major glycoproteins labeled with N-acetyl [14C]glucosamine in the nuclear matrix fraction. We obtained gP 32, gP 67 and gP70 with pI values around 6.2, 6.5 and 8.2.
  相似文献   

3.
In the presence of Mn2+ and uridine diphosphate-N-acetyl-D-[14C]glucosamine, a total particulate fraction prepared from Dictyostelium discoideum amoebae catalyzed the transfer of N-acetyl[14C]glucosamine to endogenous membrane protein acceptors. No transfer to lipid acceptors was evident. The 14C products obtained from growth-phase and aggregation-competent amoebae were converted to glycopeptides by pronase digestion. The respective glycopeptides appeared identical in their chemical and chromatographic properties, suggesting that the same activity was functioning in both growing and differentiating cells. The results provided no evidence for developmental regulation of this activity in D. discoideum.  相似文献   

4.
Two inhibitors of glycosylation, glucosamine and tunicamycin, were utilized to examine the effect of glycosylation inhibition in mouse neuroblastoma N18 cells on the degradation of membrane glycoproteins synthesized before addition of the inhibitor. Treatment with 10 mM-glucosamine resulted in inhibition of glycosylation after 2h, as measured by [3H]fucose incorporation into acid-insoluble macromolecules, and in a decreased rate of glycoprotein degradation. However, these results were difficult to interpret since glucosamine also significantly inhibited protein synthesis, which in itself could cause the alteration in glycoprotein degradation [Hudson & Johnson (1977) Biochim. Biophys. Acta 497, 567-577]. N18 cells treated with 5 microgram of tunicamycin/ml, a more specific inhibitor of glycosylation, showed a small decrease in protein synthesis relative to its effect on glycosylation, which was inhibited by 85%. Tunicamycin-treated cells also showed a marked decrease in glycoprotein degradation in experiments with intact cells. The inhibition of glycoprotein degradation by tunicamycin was shown to be independent of alterations in cyclic AMP concentration. Polyacrylamide-gel electrophoresis of isolated membranes from N18 cells, double-labelled with [14C]fucose and [3H]fucose, revealed heterogeneous turnover rates for specific plasma-membrane glycoproteins. Comparisons of polyacrylamide gels of isolated plasma membranes from [3H]fucose-labelled control cells and [14C]fucose-labelled tunicamycin-treated cells revealed that both rapidly and slowly metabolized, although not all, membrane glycoproteins became resistant to degradation after glycosylation inhibition.  相似文献   

5.
1. Nuclei were prepared from rat hepatocytes. A biochemical analysis of marker enzymes showed that the nuclei are not contaminated by other subcellular fractions, especially endoplasmic reticulum. 2. The transfer of [14C]N-acetylglucosamine to endogenous acceptors were studied comparatively in the nuclei and in the other subcellular fractions of rat hepatocytes. 3. In this report we describe the presence of the transfer of N-acetylglucosamine within the nucleus of rat hepatocytes. We found 21% of this transfer in the nucleus fraction with an enrichment of 26 in comparison to homogenate.  相似文献   

6.
1. When pig ear skin slices were cultured for 18h in the presence of 1μg of tunicamycin/ml the incorporation of d-[3H]glucosamine into the epidermis, solubilized with 8m-urea/5% (w/v) sodium dodecyl sulphate, was inhibited by 45–55%. This degree of inhibition was not increased by using up to 5μg of tunicamycin/ml or by treating the skin slices with tunicamycin for up to 8 days. The incorporation of (U-14C)-labelled l-amino acids under these conditions was not affected by tunicamycin. Polyacrylamide-gel electrophoresis indicated that the labelling of the major glycosaminoglycan peak with d-[3H]glucosamine was unaffected, whereas that of the faster migrating glycoprotein components was considerably decreased in the presence of tunicamycin. 2. Subcellular fractionation indicated that tunicamycin specifically inhibited the incorporation of d-[3H]glucosamine but not of (U-14C)-labelled l-amino acids into particulate (mainly plasma-membrane) glycoproteins by about 70%. The labelling of soluble glycoproteins was hardly affected. Polyacrylamide-gel electrophoresis of the plasma-membrane fraction showed decreased d-[3H]glucosamine incorporation into all glycoprotein components, indicating that the plasma-membrane glycoproteins contained mainly N-asparagine-linked oligosaccharides. 3. Cellulose acetate electrophoresis of both cellular and extracellular glycosaminoglycans showed that tunicamycin had no significant effect on the synthesis of the major component, hyaluronic acid. However, the incorporation of both d-[3H]glucosamine and 35SO42− into sulphated glycosaminoglycans was inhibited by about 50%. This inhibition was partially overcome, at least in the cellular fraction, by 2mm-p-nitrophenyl β-d-xyloside indicating that tunicamycin-treated epidermis retained the ability to synthesize sulphated glycosaminoglycan chains. Tunicamycin may affect the synthesis and/or degradation of proteoglycan core proteins or the xylosyltransferase. 4. Electron-microscopic examination of epidermis treated with tunicamycin for up to 4 days revealed no significant changes in cell-surface morphology or in epidermal-cell adhesion. Either N-asparagine-linked carbohydrates play little role in epidermal-cell adhesion or more probably there is little turnover of these components in epidermal adhesive structures such as desmosomes and hemidesmosomes during organ culture.  相似文献   

7.
A particulate membrane fraction from Saccharomyces cerevisiae contains transferases which catalyze the incorporation of N-acetylglucosamine from UDP-N-acetylglucosamine into a lipid fraction as well as into a protein fraction. The lipid fraction contains two alkali-stable lipids which can be separated on a silica G-60 column. The sugar moieties of these polyprenoid lipids are: N-acetylglucosamine and di-N-acetylchitobiose. The transfer of carbohydrate from isolated glycolipids to endogenous protein has been examined. After separation of protein and saccharide by hydrazinolysis and reacetylation only di-N-acetylchitobiose is found, and also when glycolipid containing only one N-acetylglucosamine is used as substrate. Maximum transfer of saccharides from glycolipids to protein is obtained at a Triton X-100 concentration of 1%. At this Triton X-100 concentration there is practically no transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the phosphorylated lipid. Therefore, when polyprenyl diphosphate N-acetyl[3H]-glucosamine is incubated together with UDP-N-acetyl[14C]glucosamine with the membrane fraction in the presence of 1% Triton X-100, a doubly labelled di-N-acetylchitobiose linked to lipid is formed with N-acetyl[14C]glucosamine at the non-reducing end of the chain.  相似文献   

8.
A galactosyltransferase activity in smooth microsomes and Golgi membrane-rich fractions from rat pancreas glycosylated endogenous acceptors during incubation with UDP-[14C]galactose in the absence of exogenous glycoproteins. To evaluate the role of this activity in secretion, the endogenous products were partially characterized. Galactose-labeled fractions were sequentially extracted in 0.2 m NaHCO3 and 0.25 m NaBr to prepare membranes and soluble acceptors. Bound radioactivity was equally distributed between these two fractions. Analysis by polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated that the particulate galactose-labeled polypeptides were distinct from the soluble galactose acceptors. Rabbit antisera against highly purified zymogen granule membranes precipitated approximately 40% of the radioactivity of the particulate fraction when solubilized in nonionic detergents. In polyacrylamide gels, the galactose-labeled species of the immunoprecipitate migrated with zymogen granule membrane glycoproteins. Rabbit antisera against secretory proteins cross-reacted with less than 5% of the galactose-labeled soluble acceptors. Mature zymogen granule membranes neither contained detectable galactosyltransferase activity nor served as galactosyltransferase acceptors. These results suggest that galactosyltransferase activity associated with membranes derived from the Golgi complex glycosylated zymogen granule membrane precursors. Analysis of [14C]galactolipids did not implicate lipid intermediates in this process.  相似文献   

9.
1. After incubation of Escherichia coli with N-iodo[1,2-(14)C(2)]acetylglucosamine, 95-99% of the (14)C taken up by whole cells is located in a cold-trichloroacetic acid-soluble fraction. Two major components of this fraction are S-carboxymethylcysteine and S-carboxymethylglutathione. The same compounds accumulate during incubation with iodo[(14)C]acetate but not with iodo[(14)C]acetamide. The amount of (14)C associated with a cold-trichloroacetic acid-insoluble fraction are comparable for all three alkylating agents. After incubation with iodo[(14)C]acetamide, 50% of the label bound to whole cells is recoverable in a cold-trichloroacetic acid-insoluble fraction. 2. Uptake and incorporation of (14)C from [U-(14)C]glycerol is blocked at an early stage by N-iodoacetylglucosamine. No specific inhibition of macromolecular synthesis could be demonstrated. 3. Mutants selected for resistance to iodoacetate are partially resistant to iodoacetate and N-iodoacetylglucosamine, but show no resistance to iodoacetamide. 4. Mutants selected for resistance to N-iodoacetylglucosamine are not resistant to iodoacetate or iodoacetamide, and are defective in their ability to grow on N-acetylglucosamine. Resistance to N-iodoacetylglucosamine is not absolute, and depends on the presence of glucose or certain other sugars; there is no resistance during growth on maltose, glycerol or succinate. 5. Absolute resistance can be achieved by selecting for a second mutation conferring resistance during growth on maltose; double mutants isolated by this procedure are unable to grow on N-acetylglucosamine and grow poorly on glucosamine. Resistant single mutants have a slightly diminished uptake of N-acetyl[1-(14)C]glucosamine, but in resistant double mutants the uptake of both [1-(14)C]glucosamine and N-acetyl[1-(14)C]glucosamine is severely diminished. 6. These observations are consistent with the presence of two permeases for N-acetylglucosamine, one that also permits uptake of glucosamine and another that allows entry of methyl 2-acetamido-2-deoxy-alpha-d-glucoside. N-Iodoacetylglucosamine can gain entry to the cell by both permeases.  相似文献   

10.
Tunicamycin, an antibiotic which blocks the formation of N-acetylglucosamine-lipid intermediates, thereby preventing glycosylation of glycoproteins, inhibits the secretion of IgA and IgE by MOPC 315 mouse plasma cells and IR162 rat plasma cells, respectively. At 0.5 microng of tunicamycin per ml, D-[14C]glucosamine incorporation into newly synthesized immunoglobulin was inhibited greater than 90% while the overall rate of protein synthesized was much less inhibited (40% in the case of MOPC 315 cells and 13% in the case of IR162 cells). This dose of tunicamycin produced an 85% inhibition of IgA secretion by the MOPC 315 cells and a complete inhibition of intact IgE secretion by the IR162 plasma cells. In contrast, tunicamycin had little effect on the secretion of normally nonglycosylated lambda light chains or on cell-free protein synthesis, demonstrating that tunicamycin is not a general inhibitor of protein synthesis or a non-specific inhibitor of protein secretion. No enhancement of intracellular degradation of nonglycosylated immunoglobulin could be demonstrated. Electron microscopy of tunicamycin-treated MOPC 315 cells revealed marked dilatations of the rough endoplasmic reticulum, and direct immunofluorescence indicated that the dilated rought endoplasmic reticulum contained IgA. These data indicate that glycosylation of newly synthesized IgA and IgE may be necessary for normal secretion to occur.  相似文献   

11.
The results reported in this paper show two distinct ways for the incorporation ofN-acetylglucosamine into mitochondrial outer membranes. The first one is the glycosylation of dolichol acceptors, which is indicated by the inhibition of the synthesis of these products by the inhibitors of the dolichol intermediates (tunicamycin and GDP). The second one is the incorporation ofN-acetylglucosamine into protein acceptors directly from UDP-N-acetylglucosamine. This second way of glycosylation is only localized in mitochondria outer membranes.The existence of a direct route forN-glycoprotein biosynthesis has been based on the following evidence. First, the synthesis of theN-acetylglucosaminylated protein acceptors was not inhibited by tunicamycin or GDP. Second, the addition of exogenous dolichol-phosphate did not change the rate of biosynthesis of glycosylated protein material. Third, the sequential incorporation ofN-acetylglucosamine and mannose from their nucleotide derivatives in the presence of GDP and tunicamycin led to the synthesis of glycosylated protein material which entirely bound to Concanavalin A-Sepharose. The oligosaccharide moiety of the glycosylated protein material resulting from the direct transfer of sugars from their nucleotide derivatives to the protein acceptor is of theN-glycan type. On sodium dodecylsulphate polyacrylamide gel electrophoresis, this glycosylated material migrated as a marker protein with a molecular weight between 45 000 and 63 000. HPLC chromatofocusing analysis revealed that the fraction studied was anionic. The oligosaccharide moiety of the glycoprotein material can only be elongated by the incorporation ofN-acetylglucosamine and galactose from their nucleotide derivatives.  相似文献   

12.
1. The interaction of malonyl-CoA with the outer carnitine palmitoyltransferase (CPT) system of rat liver mitochondria was re-evaluated by using preparations of highly purified outer membranes, in the light of observations that other subcellular structures that normally contaminate crude mitochondrial preparations also contain malonyl-CoA-sensitive CPT activity. 2. In outer-membrane preparations, which were purified about 200-fold with respect to the inner-membrane-matrix fraction, malonyl-CoA binding was largely accounted for by a single high-affinity component (KD = 0.03 microM), in contrast with the dual site (low- and high-affinity) previously found with intact mitochondria. 3. There was no evidence that the decreased sensitivity of CPT to malonyl-CoA inhibition observed in outer membranes obtained from 48 h-starved rats (compared with those from fed animals) was due to a decreased ratio of malonyl-CoA binding to CPT catalytic moieties. Thus CPT specific activity and maximal high-affinity [14C]malonyl-CoA binding (expressed per mg of protein) were increased 2.2- and 2.0-fold respectively in outer membranes from 48 h-starved rats. 4. Palmitoyl-CoA at a concentration that was saturating for CPT activity (5 microM) decreased the affinity of malonyl-CoA binding by an order of magnitude, but did not alter the maximal binding of [14C]malonyl-CoA. 5. Preincubation of membranes with either tetradecylglycidyl-CoA or 2-bromopalmitoyl-CoA plus carnitine resulted in marked (greater than 80%) inhibition of high-affinity binding, concurrently with greater than 95% inhibition of CPT activity. These treatments also unmasked an effect of subsequent treatment with palmitoyl-CoA to increase low-affinity [14C]malonyl-CoA binding. 6. These data are discussed in relation to the possible mechanism of interaction between the malonyl-CoA-binding site and the active site of the enzyme.  相似文献   

13.
1. Glycosyltransferase activity incorporating N-[14C]acetylglucosamine ([14C]GlcNAc) from uridine diphosphate N-[14C]acetylglucosamine (UDP-[14C]GlcNAc) into endogenous proitein acceptors was localized primarily in the plasma membrane of Trypanosoma brucei. 2. The acceptor site for the nucleotide sugar was further localized exclusively to the cytoplasmic face of the plasma membrane. 3. The glycosyltransferase produced elongation of the growing oligosaccharide chains while they were attached to their peptide acceptors. 4. This glycosyltransferase activity was incapable of initiating sugar attachment directly to amino acid residues within peptide acceptors. 5. The dolichyl-phosphate-sugar pathway for glycoprotein biosynthesis was either absent of only present at a very low level in T. brucei when compared to rat liver. 6. All oligosaccharide chains accepting GlcNAc were of the same or very similar lengths. 7. Both O-glycosidic (26%) and N-glycosidic (74%) linkages (exclusive of hydroxylysine attachment) were found. 8. Glycosyltransferase activity required either Mn2+ or Mg2+, had a pH optimum of 6.5 and was temperature-dependent. 9. The kinetics of incorporation were complex, probably a result of multiple acceptors or glycosyltransferases whose activities were characterized by a Km of 30 microM for UDP-GlcNAc with a V of 40 pmol x mg protein -1 x min-1 for the highest affinity system and a Km of approximately 2 mM for UDP-GlcNAc with a V of approximately 400 pmol x mg protein-1 x min-1 for the lowest affinity system. 10. Glycosyltransferases using UDP-GlcNAc, uridine diphosphate glucose, uridine diphosphate galactose and guanidine diphosphate mannose as glycosyl donors were observed. Each peptide acceptor was specific for a singloe labelled sugar in the absence of other unlabelled nucleotide sugars. 11. The final extent of incorporation of GlcNAc was due primarily to exhaustion of peptide acceptor. 12. An inhibitor of UDP-[14C]GlcNAc incorporation into plasma membranes was found in the cytoplasmic fraction.  相似文献   

14.
The inhibition of growth and cell wall synthesis by 3-amino-3-deoxy-D-glucose (3-AG), which is known to be one of the constituents of the kanamycin molecule and a metabolite of Bacillus sp., was almost completely overcome by glucosamine and N-acetylglucosamine in Staphylococcus aureus but scarcely affected by D-glucose and D-fructose. The antibiotic did not inhibit the incorporation of [14C]glucosamine and [3H]N-acetylglucosamine into the acid-insoluble fraction, but rather enhanced the incorporation of [14C]glucosamine. On the other hand, it inhibited the incorporation of D-[14C]fructose into the cell wall fraction but hardly affected the incorporation of D-[14C]fructose into the acid-insoluble fraction in the presence of pencillin G. Based on these results, it is suggested that the site of primary action of 3-AG is the formation of glucosamine-6-phosphate from D-fructose-6-phosphate, which is catalyzed by glucosamine synthetase [EC 2.6.1.16].  相似文献   

15.
Regulation of Glc transfer from UDP-Glc via Glc-P-Dolichol to form Glc3-Man9-oligosaccharide-lipid has been studied during estrogen-induced chick oviduct differentiation. The process was studied as two distinct reactions: transfer of Glc from UDP-Glc to Dol-P, forming Glc-P-Dol; and transfer of Glc from Glc-P-Dol to Man9-OL (oligosaccharide-lipid), forming a series of glucosylated oligosaccharide-lipids. Kinetic analysis of [14C]Glc transfer from UDP-[14C]Glc to endogenous Dol-P shows that Dol-P is limiting in membrane preparations and that, concomitant with estrogen-induced differentiation, there is an increase in Dol-P available for Glc transfers. There is also greater glucosyl transferase activity present in membranes from mature hens and estrogenized chicks than in membranes from immature chicks. In order to study the second phase of glucosylation, transfer to the oligosaccharide, it was necessary to develop an assay in which membranes could be reacted with exogenously added substrates, [14C]Glc-P-Dol and [3H]Man9-OL. This reaction is dependent on detergent (0.02% NP-40 was used) and is stimulated by EDTA. The apparent Km for Glc-P-Dol was about 1.5 microM. A series of double-labeled oligosaccharides having sizes consistent with Glc1-, Glc2-, and Glc3-Man9-OL were formed. Chemical and enzymatic analysis of [14C]Glc oligosaccharides formed by incubation with the exogenous substrates, or by incubation with UDP-[14C]Glc and endogenous acceptors, indicated that the glucosylated oligosaccharides were similar. Assays of membranes from estrogenized chicks, mature hens, and hormone-withdrawn chicks showed increased glucosyl transferase activity upon hormone treatment. Similar assays in the absence of exogenous Man9-OL indicated that hormone treatment was also accompanied by increased levels of endogenous oligosaccharide-lipid acceptors.  相似文献   

16.
Incubating white matter membranes with UDP-N-acetyl-[14C]glucosamine in the presence of Mg2+ and AMP resulted in the labeling of two major glycolipids, a minor glycolipid and several membrane-associated glycoproteins. The addition of AMP protected the labeled sugar nucleotide from degradation by a membrane-bound sugar nucleotide pyrophosphatase activity. While no labeled oligosaccharide lipid was recovered in a CHCl3CH3OHH2O (10:10:3) extract after incubating with only UDP-N-acetyl-[14C] glucosamine, Mg2+, and AMP, the inclusion of unlabeled GDP-mannose led to the formation of an N-acetyl-[14C]glucosamine-labeled oligosaccharide lipid that was soluble in CHCl3CH3OHH2O (10:10:3). The [GlcNAc-14C]oligosaccharide unit was released by treatment with 0.1 N HCl in 80% tetrahydrofuran at 50 °C for 30 min and appears to have the same molecular size as the lipid-linked [mannose-14C] oligosaccharide, formed enzymatically by white matter membranes as judged by their elution behavior on Bio-Gel P-6. The incorporation of N-acetyl-[14C]glucosamine into glycolipid was stimulated by exogenous dolichol monophosphate, but inhibited by UMP or tunicamycin, a glucosamine-containing antibiotic. Although UMP and tunicamycin drastically inhibited the labeling of glycolipid, these compounds had very little effect on the labeling of glycoproteins. The major glycolipids have the chemical and Chromatographic characteristics of N-acetylglucosaminylpyrophosphoryldolichol and N,N′-diacetylchitobiosylpyrophosphoryldolichol. When the labeled glycoproteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, four labeled polypeptides were observed, having apparent molecular weights of 145,000, 105,000, 54,000, and 35,000. Virtually all of the N-acetyl-[14C]glucosamine was released when the labeled glycopeptides, produced by pronase digestion, were incubated with an exo-β-N-acetylglucosaminidase, indicating that all of the N-acetyl-[14C]glucosamine incorporated under these conditions is attached to white matter membrane glycoproteins at nonreducing termini.  相似文献   

17.
Isolated Golgi apparatus membranes from the germinal elements (spermatocytes and early spermatids) of rat testis were examined for their ability to incorporate [14C]mannose and [14C]galactose into glycolipid and glycoprotein fractions. Transfer of mannose from GDP-[14C]mannose into a Lipid I fractions (GPD:MPP mannosyl transferase activity), identified as mannosyl phosphoryl dolichol, showed optimal activity at 1.5 mM manganese and at pH 7.5. Low concentrations of Triton X-100 (0.1%) stimulated transferase activity in the presence of exogenous dolichol phosphate (Dol-P); however, inhibition occurred at Triton X-100 concentrations greater than 0.1%. Maximal activity of this GDP:MPP mannosyl transferase occurred at 25 microM Dol-P. Activity using endogenous acceptor was 2.34 pmole/min/mg, whereas in the presence of 25 microM Dol-P the specific activity was 284 pmole/min/mg, a stimulation of 125-fold. Incorporation of mannose into a Lipid II (oligosaccharide pyrophosphoryl dolichol) and a glycoprotein fraction was also examined. In the absence of exogenous Dol-P, rapid incorporation into Lipid I occurred with a subsequent rise in Lipid II and glycoprotein fractions suggesting precursor-product relationships. Addition of exogenous Dol-P to galactosyl transferase assays showed only a minor stimulation, less than twofold, in all fractions. Over the concentration range of 9.4 to 62.5 micrograms/ml Dol-P, only 1% of radioactive product accumulated in the combined lipid fractions. These observations suggest that the mannose transfer involves Dol-P intermediates and also that spermatocyte Golgi membranes may be involved in formation of the oligosaccharide core as well as in terminal glycosylations.  相似文献   

18.
Endomembrane (endoplasmic reticulum, Golgi apparatus, plasma membrane) proteins of soybean (Glycine max) root cells are highly glycosylated. We investigated whether N-linked oligosaccharide moieties are essential for the correct intracellular transport of plant endomembrane glycoproteins. Excised roots were incubated with tunicamycin, to block cotranslational glycosylation of proteins, and dual labeled with [3H]glucosamine and [35S] (methionine, cysteine). In the presence of tunicamycin, the incorporation of glucosamine into membrane proteins was inhibited by 60 to 90% while amino acid incorporation was only slightly affected. Autoradiograms of two-dimensionally separated polypeptides from each endomembrane fraction revealed the presence of at least one new polypeptide in tunicamycin-treated tissue. The new polypeptide was of the same isoelectric point but lower molecular weight than a preexisting polypeptide. The new polypeptide was unreactive to concanavalin A, as opposed to the preexisting polypeptide, suggesting the absence of the glycan portion. Trifluoromethanesulfonic acid and N-glycanase were used to cleave the carbohydrate from the preexisting concanavalin A binding polypeptide. In each case a deglycosylated polypeptide of the same isoelectric point and molecular weight as the new polypeptide from tunicamycin-treated tissue resulted. Since the absence of carbohydrate from the new endomembrane polypeptide did not prevent its appearance on autoradiograms of Golgi and plasma membrane, intracellular transport and intercalation of newly synthesized glycoproteins into plant cell membranes may not require the presence of polysaccharide moieties.  相似文献   

19.
The receptor protein solubilized from synaptic membranes specifically binds [14C] NAD (dissociation constant--0.75 microM, capacity of binding sites--0.0125 nmol of metaid per 1 mg of protein). All the studied benzodiazepines (phenazepam, nitrazepam, clonazepam, flunitrazepam) are able to displace [14C] NAD from its receptor sites, the mixed type of inhibition being manifested. An inhibition constant for flunitrazepam, a ligand of benzodiazepine receptors, equals 10 microM. GABA promotes an inhibiting effect of benzodiazepines. It is supposed that neurotropic action of NAD is realized through the GABA-benzodiazepine complex of neuronal membranes.  相似文献   

20.
The contribution of calmodulin and protein kinases A or C to the activation of membrane Ca-ATPase was studied on saponin-permeabilized rat erythrocytes. In the presence of all endogenous regulators, the dependence of the Ca-ATPase activity of Ca2+ concentration was described by a bell-shaped curve with a maximum at 2-5 microM Ca2+; K0.5 = 0.43 microM Ca2+. Washing of erythrocyte membranes with 5-10 microM Ca2+ maintained up to 75% of the ATPase activity, while washing with EGTA (2 mM) decreased the activity, on the average, 5-fold, and increased K0.5 up to 0.54-0.6 microM Ca2+. An addition of an EGTA extract to washed membranes restored up to 75% of the original ATPase activity, while calmodulin restored about 40% of the original Ca-ATPase activity and decreased K0.5 to 0.23-0.3 microM Ca2+. The calmodulin inhibitor R24571 failed to alter the Ca-ATPase activity in permeabilized erythrocytes but slightly diminished it in reconstituted membranes. The protein kinase C inhibitors H7 and polymyxin increased the Ca-ATPase activity in permeabilized red cells and suppressed it in reconstituted membranes. The data obtained suggest that in native red cell membranes Ca-ATPase is activated by regulator(s) dependent on Ca2+ and protein kinase which are other than calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号