首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After activation, wild-type Dictyostelium discoideum spores germinate rapidly and synchronously in phosphate buffer as well as in complex medium. Mutants defective in spore germination were isolated and characterized. These mutants (called grm) did not germinate normally in buffer but did germinate in complex medium in the presence of bacteria. One mutant (grm B) swelled normally, but amoebae were not formed. Another mutant (grm F) swelled and germinated poorly in buffer. The members of the third group of mutants (A, C, D, and E) did not swell or give rise to amoebae in buffer.  相似文献   

2.
The specific activity of cathepsin B-like, cathepsin D-like, and leucine aminopeptidase enzymes was measured in dormant, aging, and germinating spores of wild-type and mutant Dictyostelium discoideum.The activity of leucine aminopeptidase was relatively constant during spore aging and spore germination. The level of cathepsin D-like activity was highest in young dormant spores but decreased during germination or aging.The level of cathepsin B-like activity remained constant in wild-type spores which were aged for 13 days. The dormant spores of spontaneous germination mutants initially contained low levels of cathepsin B-like activity which increased during aging. Thus, there was no correlation between the level of endogenous cathepsin B activity and the ability to be autoactivated or heat-activated. The level of cathepsin B-like activity does not have a role in the generation of energy for the swelling stage of germination. Finally, the combined level of endogenous and exogenous cathepsin B activity increased more than 20-fold during the emergence of myxamoebae suggesting that the enzyme(s) may play a role at this development stage of germination.  相似文献   

3.
mRNA decay was studied during spore germination in Dictyoselium discoideum by the use of three previously isolated cDNA clones, pLK109, pLK229, and pRK270, which are specific for mRNAs developmentally regulated during spore germination. The half-life of a constitutive mRNA, pLK125, which is present throughout germination, growth, and development, as also determined. Nogalamycin, a DNA-intercalating compound, was used to inhibit RNA synthesis. Total RNA was isolated at intervals after addition of the drug, and the decay of mRNAs specific for the cDNA clones was determined by both Northern blot and RNA dot hybridization. If nogalamycin was added immediately after activation of dormant spores, neither pLK229 nor pLK109 mRNA decayed, but pLK125 mRNA did decay. Although pLK109 mRNA did not decay under these conditions, the RNA was smaller 1 h after activation than in dormant spores, indicating that it was processed normally. At 1 h after activation, pLK229-, pLK125-specific mRNAs decayed exponentially, with half-lives of 24, 39, and 165 min, respectively. Under the same conditions, decay of pLK109-specific mRNA was biphasic. Thirty-eight percent of the mRNA decayed with a half-life of 5.5 min, and the remainder decayed with a half-life of 115 min. It seems likely that nogalamycin inhibits the synthesis of an unstable component of the mRNA degradative pathway which is needed continuously for the decay of pLK109 mRNA. By extrapolating the curve representing the rapidly decaying component, a half-life of 18 min was calculated for pLK109-specific mRNA. The mRNAs developmentally regulated during spore germination have half-lives shorter than that of the constitutive messenger and shorter than the average half-life of 3 to 4 h previously determined for total Dicyostelium polyadenylated mRNA.  相似文献   

4.
5.
Discadenine, 3-(3-amino-3-carboxypropyl)-6-(3-methyl-2-butenylamino)purine, a spore germination inhibitor of the cellular slime mold Dictyostelium discoideum showed cytokinin activity in the tobacco callus bioassay.  相似文献   

6.
mRNA specific to cDNA clone pLK109 is present in Dictyostelium discoideum spores, increases about two- to threefold at 0.5 to 1 h during spore germination, and then rapidly decreases. The mRNA is not detectable in vegetative cells or in early multicellular development on filters, but is present late during development, approximately at the time of sporulation. 109 mRNA in spores is 700 nucleotides in length but this is processed during germination by shortening of the poly(A) tail to about 600 nucleotides at 1 to 1.5 hours. pLK109 is a member of a multigene family containing three separate genes, and we have isolated and sequenced all of them. All three sequences code for deduced proteins of 127 amino acid residues, with only a few amino acid differences among them. Gene 1 represents the "transcribed" gene, since all 33 cDNAs we isolated are identical with the cDNA pLK109 and the coding region of this gene. Other open reading frames are in close proximity to each of the 109 sequences. About 200 base-pairs 3' to the gene 1 109 sequence is an open reading frame in the opposite orientation. Gene 2 fragment contains a sequence that codes for a protein similar to trypanosome alpha-tubulin 728 base-pairs 5' to the 109 sequence. Gene 3 fragment possesses two additional putative coding regions, one 5' and another 3' to the 109 gene. There is a remarkable similarity between the 5' upstream regions of all three genes. Each possesses a normal Dictyostelium TATA box and the usual T stretch. In addition, there are many other portions of about 400 to 500 base-pairs of the 5' regions that are either identical for long stretches or very similar.  相似文献   

7.
8.
9.
Spore germination in the slime mold Dictyostelium discoideum was used as a model to study the developmental regulation of protein and mRNA synthesis. Changes in the synthesis of these macromolecules occur during the transition from dormant spore to amoebae. The study of the mechanisms which regulate the quantity and quality of protein synthesis can best be accomplished with cloned genes. cDNA clones which hybridized primarily with mRNAs from only spores or germinating spores and not with growing amoebae were collected. Three such clones, denoted pLK109, pLK229, and pRK270, were isolated and had inserts of approximately 500, 1,200, and 690 base pairs, respectively. Southern blot hybridization experiments suggested that each of the genes is present in multiple copies in the D. discoideum genome. RNA blot hybridizations were performed to determine the sizes of the respective mRNAs and their developmental regulation. The mRNA that hybridized to pLK109 DNA was present predominantly in spores and at 1 h after germination but was absent in growing amoebae. Its concentration dramatically dropped at 3 h. The mRNA present in spores is apparently larger (approximately 0.5 kilobase) than in the later stages of germination (0.4 kilobase), indicating processing of the RNA during germination. The mRNA that hybridized to pLK229 DNA was approximately 1.0 kilobase and was present in very low amounts during growth. Its concentration rose until 1 h after spore germination and decreased thereafter. pRK270-specific RNA was approximately 2.7 kilobases and was found predominantly at 1 h after germination. It was present in lower concentrations at 2 and 3 h after germination and was absent in spores and amoebae. In vitro translation of mRNA selected from 1-h polyadenylated RNA which was hybridized to pLK109 or pLK229 DNA gave proteins of molecular weights consistent with the sizes of the mRNAs as determined by the RNA blot analysis.  相似文献   

10.
Mutant spores of Dictyostelium discoideum, strain SG-10, differ from wild type spores in their ability to spontaneously germinate, to be activated with 5% dimethyl Sulfoxide (DMSO), and to be deactivated with 0.2 M sucrose. Both heat-activated wild type and mutant spores began to swell after a lag of 60–75 min at ambient temperature. Suspension of heat activated spores in 5% DMSO resulted in blockage of spore swelling and a concomitant severe inhibition of respiration; removal of 5% DMSO allowed resumption of respiration and the spores began to swell after a lag of only 15 min. It was concluded that 5% DMSO allowed the early reactions (M) to proceed but blocked the later reactions (R) of post-activation lag.Treatment of one day old spores with 20% DMSO solution for 30–120 min quantitatively activated the population. The post-activation lag time was directly dependent on the time of 20% DMSO treatment. Spores activated with 20% DMSO treatment could be deactivated by incubation at 0°C; the spores most quickly deactivated at 0°C were those within 10 min of swelling. Mitochondrial transport inhibitors such as azide and cyanide caused deactivation in an analogous manner. It is hypothesized that spores proceed to the second portion of the lag phase called (R) before the environment determines if dormancy is reimposed or if germination will proceed. The sensitive strain (SG-10) showed a greater degree of damage than the wild type after supraoptimal treatment with 40% DMSO. The spores became more resistant with age to the damaging action of 40% DMSO. All the observed effects of DMSO treatment were compatible with our multistate model of activation which suggests that the early portion of the lag phase (M) may involve a relative uncoupling of oxidative phosphorylation while the later portion (R) may require tight coupling.  相似文献   

11.
Amoebae and spores of the cellular slime mold Dictyostelium discoideum have been investigated by natural-abundance proton-decoupled 13C-NMR spectroscopy. Axenically grown vegetative amoebae have been found to contain, as prominent metabolites, the polyamines 1,3-diaminopropane (3.2 mM), putrescine (9.4 mM) and spermidine (1.7 mM). We also detected lactic acid (4.4 mM) and the following amino acids as free metabolites in concentrations ranging over 1-3 mM: glycine, alanine, glutamine and glutamate. The glycogen level is highly dependent upon growth state, being below the level of NMR detection in early-exponential cells and reaching about 110 mM glucose equivalents in plateau-phase cells. Dormant spores contained high amounts of trehalose (50 mM), glutamine (73 mM) and glutamate (20 mM). The latter two compounds were not reported previously to be present in such high concentrations in Dictyostelium spores. Germination induced by heat-shock activation was monitored by 13C NMR. No change in the major components occurred during the activation step. The progressive disappearance of trehalose during germination correlated with the decrease of glutamine and glutamate. In general, the data suggest that germinated spores contain a composition of free metabolites very similar to that of starved vegetative amoebae.  相似文献   

12.
13.
SG mutant and aged wild type spores of the cellular slime mold Dictyostelium discoideum germinate in the absence of an externally applied activation treatment. This type of germination is referred to as autoactivation. During the swelling stage of autoactivation, spores release a factor, the autoactivator, capable of stimulating germination in subsequent spore populations. The autoactivator was not present in the dormant spore, but it or a precursor was produced internally during the first hour of autoactivation. This production was sensitive to moderately high temperatures (+31° C) and was completely destroyed by heat activation (45° C for 30 min). Internal production of the autoactivator was not sensitive to protein synthesis inhibitors. However, the release of the activator from the spore appeared to be regulated by protein synthesis. Internal autoactivator was also produced in the aged wild type strain during the postautoactivation lag phase. The activator could not be directly isolated from within the germinating spore. Its activity on the rest of the spore population was dependent upon its release from the germinating spore. A model is presented integrating the effects of heat, cycloheximide, autoinhibitor and autoactivator on spores of D. discoideum.  相似文献   

14.
15.
16.
The pattern of synthesis of the spore coat proteins during development of Dictyostelium discoideum has been determined by using immunoprecipitation with spore protein antibody. SP170, SP103, 'SP94', SP82, SP76 and SP55 are all first synthesized just prior to the 'Mexican hat' stage of development (16-18h), but the synthesis of SP72 is delayed. This protein is apparently synthesized as a precursor, P66, which is modified during spore maturation to yield SP72. The nature of the modification is unknown. At their peak period of synthesis during early culmination (18-20h), the spore coat proteins account for 5-9% of total protein synthesis. Shortly after synthesis, these proteins are inserted into the spore coat, where all except SP103 become disulphide-cross-linked during the period 24-30h. SP3 does not accumulate until disulphide-cross-linking of the major spore coat proteins occurs and is itself disulphide-cross-linked into the spore coat. Several additional proteins that are accumulated during development have also been identified, namely P31, P25, P21 and P18. P25 first appears at 18-20h and then continues to be made throughout development. P31 synthesis begins at 12-14h and then largely ceases after approx. 20 h of development. The genes for both P21 and P18 are first expressed early in development, starting at 9-12h. P21 synthesis ceases at approx. 14h, but P18 continues to be synthesized throughout the rest of development. The marked differences in the time period of accumulation of these proteins compared with the co-ordinated syntheses of SP170, SP103, 'SP94', SP82, SP76 and SP55 provide a useful system for analysis of the mechanism of temporal gene expression during development.  相似文献   

17.
The spore coat of a fucosylation mutant in Dictyostelium discoideum   总被引:1,自引:0,他引:1  
Strain HL250 of Dictyostelium discoideum cannot convert GDP-mannose to GDP-fucose, resulting in an inability to fucosylate protein. This affects a group of proteins which are normally fucosylated intracellularly and then secreted via prespore vesicles to become part of the outer lamina of the spore coat. We have found that strain HL250 nevertheless accumulates typical amounts of these proteins, stores them normally in prespore vesicles, and secretes them normally to become a part of the spore coat. However, affected proteins are proteolyzed after germination, the spore coat is more accessible to penetration by a macromolecular probe, and germination is inefficient in older spores. These findings can be explained by a dependence of the integrity of the outer layer of the spore coat on protein-linked fucose.  相似文献   

18.
Abstract RasG protein levels in dormant and germinating spores of Dictyostelium discoideum strains JC1 and SG1 were estimated by Western blotting. Ras Glevels were very low in dormant spores and remained low during the lag period, regardless of whether spores were heat activated or treated with autoactivator during the early stages of spore germination. RasG levels increased late during spore swelling just prior to the emergence stage of germination. These data are consistent with a requirement for RasG during vegetative growth.  相似文献   

19.
During Dictyostelium discoideum spore germination, degradation of the cellulose-containing spore wall is required to allow the amoeba to emerge. The CelA gene, which is transcribed and expressed exclusively during spore germination, codes for a 705-amino-acid protein that has cellulase activity [endo-(1,4)-beta-D-glucanase]. Amoebae transformed by a vector containing the CelA coding sequence or portions of it transcribed from a heterologous promoter expressed and secreted full-length or suitably truncated proteins during vegetative growth when, under normal conditions, these proteins are not made. The gene constructs divided the CelA protein into three domains: a 461-amino-acid N-terminal region that has significant similarity to those of other cellulases and that has been shown to be the catalytic domain; a contiguous 91-residue repeat containing the motif threonine-glutamic acid-threonine-proline, which is glycosylated; and, joined to the repeat, a C-terminal 153-amino-acid sequence that most probably defines a cellulose-binding domain.  相似文献   

20.
Isolation of germination mutants of Dictyostelium discoideum   总被引:2,自引:1,他引:1  
A simple method to separate spores from amoebae of Dictyostelium discoideum has been devized and used to isolate spore germination mutants. A subclass of these mutants is temperature sensitive for germination and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号