首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, self-replicating RNA vaccines (RNA replicons) have emerged as an effective strategy for nucleic acid vaccine development. Unlike naked DNA vaccines, RNA replicons eventually cause lysis of transfected cells and therefore do not raise the concern of integration into the host genome. We evaluated the effect of linking human papillomavirus type 16 E7 as a model Ag to Mycobacterium tuberculosis heat shock protein 70 (HSP70) on the potency of Ag-specific immunity generated by a Sindbis virus self-replicating RNA vector, SINrep5. Our results indicated that this RNA replicon vaccine containing an E7/HSP70 fusion gene generated significantly higher E7-specific T cell-mediated immune responses in vaccinated mice than did vaccines containing the wild-type E7 gene. Furthermore, our in vitro studies demonstrated that E7 Ag from E7/HSP70 RNA replicon-transfected cells can be processed by bone marrow-derived dendritic cells and presented more efficiently through the MHC class I pathway than can wild-type E7 RNA replicon-transfected cells. More importantly, the fusion of HSP70 to E7 converted a less effective vaccine into one with significant potency against E7-expressing tumors. This antitumor effect was dependent on NK cells and CD8(+) T cells. These results indicated that fusion of HSP70 to an Ag gene may greatly enhance the potency of self-replicating RNA vaccines.  相似文献   

2.
BACKGROUND: DNA vaccines have been shown to be an effective approach to induce antigen-specific cellular and humoral immunity. However, the lower immune intensity in clinical trials limits the application of DNA vaccine. Here we intend to develop a new DNA vaccine based on prostate stem-cell antigen (PSCA), which has been suggested as a potential target for prostate cancer therapy, and enhance the DNA vaccine potency with heat shock proteins (HSPs) as adjuvant. METHODS: A series of DNA plasmids encoding human PSCA, human HSP70 and their conjugates was constructed and injected into male mice intramuscularly (i.m.). To evaluate the immune responses and therapeutic efficacy of these plasmids, major histocompatibility complex (MHC)-restricted PSCA and HSP70-specific epitopes were predicted and a mouse model with a human PSCA-expressing tumor was constructed. RESULTS: The result showed that mice vaccinated with PSCA-HSP plasmids generated the strongest PSCA-specific CD8+ T-cell immune response, but the CD4+ TH1 and TH2 cell immune responses were similar with those vaccinated with other HSP-adjuvant PSCA plasmids or only PSCA DNA. The immunity of HSP70 was also observed and the mice i.m. injected with PSCA+ HSP mixed plasmids generated the lowest anti-HSP antibodies. Furthermore, these vaccinations inhibited the growth of PSCA-expressing tumors and prolonged mouse survival. CONCLUSIONS: These observations emphasize and extend the potential of the human HSP70 gene as adjuvant for DNA vaccines, and the vaccine based on PSCA and HSP70 is of potential value for treating prostate cancer.  相似文献   

3.
旨在以乙肝病毒 (HBV) 的主要结构蛋白-表面蛋白 (HBsAg) 和核心蛋白 (HBcAg) 作为抗原设计DNA疫苗,研究热休克蛋白HSP70和gp96作为新型免疫佐剂增强疫苗的细胞免疫和体液免疫水平。利用酶联免疫斑点实验、流式细胞内因子染色、3H-TdR实验、酶联免疫吸附实验技术分析,结果显示HSP70和gp96可使疫苗的细胞免疫水平提高1~6倍,提高体液免疫水平20%~60%。研究结果为设计以HSP70和gp96作为免疫佐剂的新型乙肝治疗性疫苗提供了依据。  相似文献   

4.
Respiratory syncytial virus (RSV) is a major respiratory pathogen in newborns. Neonate vaccine should induce strong protective immunity. We have engineered a subunit vaccine candidate G1F/M2. A major problem in developing subunit vaccines is their limited immunogenicity. Aluminium adjuvants with a long history of use with routine childhood vaccines have some limitations, especially inability to elicit CTL response. There is a need for alternative adjuvants. Heat shock proteins (HSPs) are characterized as potent immunoadjuvants. In this study, HSP70-like protein 1 (HSP70L1) gene was cloned. The recombinant protein HSP70L1 was expressed in E. coli, purified and renaturated. We evaluated the potential of HSP70L1 used as the adjuvant of G1F/M2. G1F/M2 was chemically cross-linked with HSP70L1 (HSP-G1F/M2). HSP70L1 enhanced significantly the immunogenicity and protective effect of G1F/M2. HSP-G1F/M2 induced significant higher levels of antibodies, neutralizing antibodies and CTL activity than unadjuvanted G1F/M2. The antibody titers induced by HSP-G1F/M2 were similar to that by G1F/M2 + Alum. RSV-specific CTL activity induced by HSP-G1F/M2 was stronger than that by G1F/M2 + Alum. Interestingly, the protective effect of HSP-G1F/M2 against RSV was significantly stronger than that of G1F/M2 + Alum. The results suggest that HSP70L1 is a potent adjuvant of G1F/M2.  相似文献   

5.
The cancer-testis antigen encoded by the MAGE-1 gene is an attractive antigen in tumor immunotherapy because it can be processed as a foreign antigen by the immune system and generate tumor-specific cellular immune response in vivo. However, increase of the potency of MAGE-1 DNA vaccines is still needed. The high degree of sequence homology and intrinsic immunogenicity of heat shock protein 70 (HSP70) have prompted the suggestion that HSP70 might have immunotherapeutic potential, as HSP70 purified from malignant and virally infected cells can transfer and deliver antigenic peptides to antigen-presenting cells to elicit peptide-specific immunity. In this research, we evaluated the enhancement of linkage of Mycobacterium tuberculosis HSP70 to MAGE-1 gene of the potency of antigen-specific immunity elicited by naked DNA vaccines. We found that vaccines containing MAGE-1-HSP70 fusion genes enhanced the frequency of MAGE-1–specific cytotoxic T cells in contract to vaccines containing the MAGE-1 gene alone. More importantly, the fusion converted a less effective DNA vaccine into one with significant potency against established MAGE-1–expressing tumors. These results indicate that linkage of HSP70 to MAGE-1 gene may greatly enhance the potency of DNA vaccines, and generate specific antitumor immunity against MAGE-1–expressing tumors.  相似文献   

6.
Over the last few years, some of our experiments in which mycobacterial heat-shock protein (HSP) antigens were presented to the immune system as if they were viral antigens have had a significant impact on our understanding of protective immunity against tuberculosis. They have also markedly enhanced the prospects for new vaccines. We now know that the mycobacterial HSP65 antigen can confer protection equal to that from live BCG vaccine in mice.  相似文献   

7.
HSP70i and other stress proteins have been used in anti-tumor vaccines. This begs the question whether HSP70i plays a unique role in immune activation. We vaccinated inducible HSP70i (Hsp70-1) knockout mice and wild-type animals with optimized TRP-1, a highly immunogenic melanosomal target molecule. We were unable to induce robust and lasting depigmentation in the Hsp70-1 knockout mice, and in vivo cytolytic assays revealed a lack of cytotoxic T-lymphocyte activity. Absence of T-cell infiltration to the skin and maintenance of hair follicle melanocytes were observed. By contrast, depigmentation proceeded without interruption in mice lacking a tissue-specific constitutive isoform of HSP70 (Hsp70-2) vaccinated with TRP-2. Next, we demonstrated that HSP70i was necessary and sufficient to accelerate depigmentation in vitiligo-prone Pmel-1 mice, accompanied by lasting phenotypic changes in dendritic cell subpopulations. In summary, these studies assign a unique function to HSP70i in vitiligo and identify HSP70i as a targetable entity for treatment.  相似文献   

8.
Bacille Calmette-Guerin (BCG)-derived heat shock protein 65 (HSP65) has been demonstrated capable of assisting a fused peptide to generate the peptide-specific cellular immunity. Various HSP65 fusion proteins have been developed as therapeutic cancer vaccines. Purifying a recombinant HSP65 fusion protein with no purification tags for human use is routinely a challenge. Here, we report a scheme for purifying a non-tagged recombinant HSP65-Her2 peptide fusion protein (HSP65-Her2) from Escherichia coli. The HSP65-Her2 is being developed as an immunotherapeutic for the treatment of Her2-positive tumors. After fermentation in a 10-L fermentor, the HSP65-Her2 expressing E. coli were harvested and lysed by sonication. The recombinant HSP65-Her2 was then purified with four successive steps including Butyl-Sepharose FF, DEAE-Sepharose FF, 1% Triton X-114 phase separation and Sephadex G-25. Results showed that HSP65-Her2 was purified up to 97% purity and was able to generate Her2-specific cytotoxic T lymphocytes (CTLs), suggesting that the scheme is efficient for purifying the non-tagged HSP65-Her2 fusion protein with biological activity.  相似文献   

9.
Exogenous heat shock protein (HSP):peptide complexes are processed for cross-presentation of HSP-chaperoned peptides on class I MHC (MHC-I) molecules. Fusion proteins containing HSP and Ag sequences facilitate MHC-I cross-presentation of linked antigenic epitopes. Processing of HSP-associated Ag has been attributed to dendritic cells and macrophages. We now provide the first evidence to show processing of HSP-associated Ag for MHC-I cross-presentation by B lymphocytes. Fusion of OVA sequence (rOVA, containing OVA(230-359) sequence) to Mycobacterium tuberculosis HSP70 greatly enhanced rOVA processing and MHC-I cross-presentation of OVA(257-264):K(b) complexes by B cells. Enhanced processing was dependent on linkage of rOVA sequence to HSP70. M. tuberculosis HSP70-OVA fusion protein enhanced cross-processing by a CD91-dependent process that was independent of TLR4 and MyD88. The enhancement occurred through a post-Golgi, proteasome-independent mechanism. These results indicate that HSPs enhance delivery and cross-processing of HSP-linked Ag by B cells, which could provide a novel contribution to the generation of CD8(+) T cell responses. HSP fusion proteins have potential advantages for use in vaccines to enhance priming of CD8(+) T cell responses.  相似文献   

10.
Molecular chaperones of the HSP70 family (70 kDa heat shock proteins) are involved in presentation of exogenous antigenic peptides by antigen-presenting cells (APC). HSP70 complexes with tumor-associated peptides are powerful immunotherapeutic agents, inducing an adaptive cytotoxic T-cell mediated immune response. Several clinical trials have shown that HSP-based autological anticancer vaccines possess high efficiency and safety. However, sometimes it is impossible to isolate sufficient amount of such vaccines and so human recombinant HSP are used for in vitro loading with tumor-associated peptides. In this study we have investigated binding of two human recombinant proteins HSP70HYB and HSC70 with antigenic peptides of different origin and optimized conditions for complex formation. The proposed method for complex formation increases the repertoire of HSP70 bound peptides compared with in vivo formed complexes.  相似文献   

11.
12.
The beta-subunit of human chorionic gonadotropin (beta-hCG) is secreted by many kinds of tumors and it has been used as an ideal target antigen to develop vaccines against tumors. In view of the low immunogenicity of this self-peptide,we designed a method based on isocaudamer technique to repeat tandemly the 10-residue sequence X of beta-hCG (109-118), then 10 tandemly repeated copies of the 10-residue sequence combined with beta-hCG C-terminal 37 peptides were fused to mycobacterial heat-shock protein 65 to construct a fusion protein HSP65-X10-betahCGCTP37 as an immunogen. In this study, we examined the effect of the tandem repeats of this 10-residue sequence in eliciting an immune by comparing the immunogenicity and anti-tumor effects of the two immunogens, HSP65-X10-betahCGCTP37 and HSP65-betahCGCTP37 (without the 10 tandem repeats). Immunization of mice with the fusion protein HSP65-X10-betahCGCTP37 elicited much higher levels of specific anti-beta-hCG antibodies and more effectively inhibited the growth of Lewis lung carcinoma (LLC) in vivo than with HSP65-betahCGCTP37, which should suggest that HSP65-X10-betahCGCTP37 may be an effective protein vaccine for the treatment of beta-hCG-dependent tumors and multiple tandem repeats of a certain epitope are an efficient method to overcome the low immunogenicity of self-peptide antigens.  相似文献   

13.
Although a physiological role of heat-shock proteins (HSP) in antigen presentation and immune response activation has not been directly demonstrated, their use as vaccine components is under clinical trial. We have previously demonstrated that the structure of plant-derived HSP70 (pHSP70) can be superimposed to the mammalian homologue and similarly to the mammalian counterpart, pHSP70-polypeptide complexes can activate the immune system. It is here shown that pHSP70 purified from plant tissues transiently expressing the influenza virus nucleoprotein are able to induce both the activation of major histocompatibility complex class I-restricted polyclonal T-cell responses and antibody production in mice of different haplotypes without the need of adjuvant co-delivery. These results indicate that pHSP70 derived from plants producing recombinant antigens may be used to formulate multiepitope vaccines.  相似文献   

14.
Exogenously delivered antigenic peptides complexed to heat shock proteins (HSPs) are able to enter the endogenous Ag-processing pathway and prime CD8+ CTL. It was determined previously that a hybrid peptide containing a MHC class I-binding epitope and HSP70-binding sequence Javelin (J0) in complex with HSP70 could induce cytotoxic T cell responses in vivo that were more robust than those induced by the minimal epitope complexed with HSP70. The present study introduces a novel, higher-affinity HSP70-binding sequence (J1) that significantly enhances binding of various antigenic peptides to HSP70. A competition binding assay revealed a dissociation constant that was 15-fold lower for the H2-K(b) OVA epitope SIINFEKL-J1 compared with SIINFEKL-J0, indicating a substantially higher affinity for HSP70. Further, modifying the orientation of the hybrid epitope and introducing a cleavable linker sequence between the Javelin and the epitope results in even greater immunogenicity, presumably by greater efficiency of epitope processing. The enhanced immunogenicity associated with Javelin J1 and the cleavable linker is consistently observed with multiple mouse and human epitopes. Thus, by creating a series of epitopes with uniform, high-affinity binding to HSP70, successful multiple epitope immunizations are possible, with equal delivery of each antigenic epitope to the immune system via HSP70. These modified epitopes have the potential for creating successful multivalent vaccines for immunotherapy of both infectious disease and cancer.  相似文献   

15.
利用毕赤酵母系统对O型口蹄疫病毒VP1基因与结核杆菌HSP70基因进行融合表达,并检测此融合蛋白对小鼠细胞免疫和体液免疫的影响。将人工合成的O型口蹄疫病毒VP1基因与结核杆菌HSP70基因克隆入酵母表达载体pPICZαA中,以电穿孔法转化酵母菌X-33,用Zeocin YPDS平板筛选重组子,经甲醇诱导表达后,SDS-PAGE和免疫印迹分析表达产物。以皮下接种的方式给小鼠进行3次免疫,同时设两组对照,分别免疫PBS和常规灭活疫苗,然后通过MTT法和ELISA分别检测淋巴细胞的增殖情况和抗体水平。结果表明融合蛋白既能诱导细胞免疫应答又能诱导体液免疫应答,其诱导产生的抗体水平略低于常规灭活疫苗,而细胞免疫水平则高于后者。  相似文献   

16.
With the clinical use of purified, tumor-derived chaperone proteins as anti-cancer vaccines already in clinical trial stages, we have focused our attention on the utility of chaperone-rich cell lysates (CRCL) in cancer immunotherapy. CRCL, as prepared from tumor lysates via a free solution-isoelectric focusing (FS-IEF) technique, is a high-yield vaccine enriched for numerous chaperone proteins. We have compared the efficacy of CRCL vaccines to that of individual chaperone protein vaccines in in vivo settings, including ELISPOT assays, tumor-growth assays and survival assays. In all experiments, CRCL vaccines were at least as effective, and in some settings perhaps even more effective, than either of the two most heavily studied components of CRCL, HSP70 and GRP94/gp96, in reduction in tumor growth and prolongation of survival in both prophylactic and pre-existing tumor settings against tumors of diverse origin and genetic background. Combining CRCL preparations with dendritic cells ex vivo resulted in a cellular vaccine that could eradicate pre-existing tumors in a high percentage of cases. The high yields of CRCL vaccines from small quantities of starting materials, the relative ease of its procurement and the functional data presented here suggest that CRCL vaccines are worthy of evaluation in pilot clinical trial cancer immunotherapy protocols.  相似文献   

17.
Three stresses, viz heat, oxidative and pH shocks, were applied to cultures of three species of Acanthamoeba, free-living Acanthamoeba rhysodes and pathogenic Acanthamoeba castellanii and Acanthamoeba culbertsoni. The effect of each stressor on trophozoite integrity was evaluated by the amount of heat shock protein (HSP)60 and HSP70 produced and by exclusion of 0.2% Congo Red. HSP60 and HSP70 levels were estimated using Western blotting and subsequent densitometric analyses. Unstimulated trophozoites from A. rhysodes produced the lowest background levels of HSP60 and HSP70 and were the amoebae most affected by (mammalian-type) stresses as judged by their enhanced HSP production and decreased viability upon exposure to such conditions. In contrast, unstimulated Acanthamoeba of the pathogenic variety had relatively high background levels of test HSPs and seemed undisturbed by the types of stresses they must deal with when entering their hosts. These studies suggest that high HSP levels in amphizoic acanthamoebae may indicate their involvement in (i) tolerance induction to hosts' stressors and/or (ii) in species' virulence.  相似文献   

18.
Microencapsulated heat shock proteins HSP 70 were studied in terms of their effects on neutrophil apoptosis, production of reactive oxygen species, and secretion of TNF-α by human neurtrophils and monocytes. Encapsulated HSP70 inhibited neutrophil apoptosis by 65% as compared to the effect of nonencapsulated HSP70; TNF-α production by the promonocytic THP-1 cells was similarly inhibited by the non-encapsulated and encapsulated HSP70. Thus, the polyelectrolyte micromolecules can be used as containers for effective delivery of HSP70 up to neutrophils and monocytes to correct the innate immunity functions.  相似文献   

19.
APCs process heat shock protein (HSP):peptide complexes to present HSP-chaperoned peptides on class I MHC molecules, but the ability of HSPs to contribute chaperoned peptides for class II MHC (MHC-II) Ag processing and presentation is unclear. Our studies revealed that exogenous bacterial HSPs (Escherichia coli DnaK and Mycobacterium tuberculosis HSP70) delivered an extended OVA peptide for processing and MHC-II presentation, as detected by T hybridoma cells. Bacterial HSPs enhanced MHC-II presentation only if peptide was complexed to the HSP, suggesting that the key HSP function was enhanced delivery or processing of chaperoned peptide Ag rather than generalized enhancement of APC function. HSP-enhanced processing was intact in MyD88 knockout cells, which lack most TLR signaling, further suggesting the effect was not due to TLR-induced induction of accessory molecules. Bacterial HSPs enhanced uptake of peptide, which may contribute to increased MHC-II presentation. In addition, HSPs enhanced binding of peptide to MHC-II molecules at pH 5.0 (the pH of vacuolar compartments), but not at pH 7.4, indicating another mechanism for enhancement of MHC-II Ag processing. Bacterial HSPs are a potential source of microbial peptide Ags during phagocytic processing of bacteria during infection and could potentially be incorporated in vaccines to enhance presentation of peptides to CD4+ T cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号