首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effective hydrodynamic (Stokes) radii of fifteen serum proteins were estimated by Sephadex G 200 gel filtration and immunochemical methods. The Waldmann-Meyer and Birch equation (Protides Biol. Fluids, Proc. 21st Colloq. (1974) (Peeters, H., ed.), Vol. 21, pp. 653-656, Pergamon Press, Oxford) was used for maximum accuracy. Three replicate column runs were made to assess the precision for the size determinations (coefficients of variation 0.6-2.7(). Quantive two-dimensional immunoelectrophoresis was used to measure eleven proteins in specimens of serum and amniotic fluid collected from twelve normal pregnancies. There was a close inverse linear relationship between the amniotic fluid/serum ratios of the proteins and their Stokes radii. This indicates that the movement of a protein from the blood to amniotic fluid is determined by the size of the protein. The linear correlation of protein amniotic fluid/serum ratio with Stokes radius was better than that with molecular weight. This demonstrates that, as an expression of protein size, Stokes radius should be used in preference to molecular weight when protein filtration systems are being investigated.  相似文献   

2.
In a new approach to isolating proteins which participate in the Ca2+-dependent regulation of membrane traffic in animal cells, two new Ca2+-binding proteins (Mr 67 000 and 32 500) have been identified in and purified from bovine liver, brain, and adrenal medulla. These proteins specifically and reversibly bind to chromaffin granule membranes at low Ca2+ concentrations (half-maximal binding at 5.5 microM Ca2+) and greatly potentiate the Ca2+-induced aggregation of these membranes at higher concentrations (above 10 microM). In the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetate, the isolated proteins have Stokes radii of 3.40 nm (Mr 67 000) and 2.53 nm (Mr 32 500) as estimated by gel filtration and therefore occur as monomers. They are slightly acidic proteins with pI's of 5.85 and 5.60. In bovine tissues, both proteins and a third protein of Mr 35 000 cross-react immunologically with each other and with Torpedo calelectrin (Mr 34 000) and are therefore identified as mammalian calelectrins. In all tissues of Torpedo marmorata tested, only a single molecular mass form of calelectrin exists, whereas multiple forms of calelectrin exist in mammalian tissues, indicating gene duplication during evolution. We suggest that the evolutionary conservation and diversification, the high tissue concentrations, and the Ca2+-specific interactions of the calelectrins make them candidates for Ca2+-dependent regulators of membrane events in animal cells.  相似文献   

3.
Flow field-flow fractionation is introduced as a new tool applicable to protein studies. Specific advantages of this method are discussed, including the capability for measuring diffusivities and Stokes radii directly, even for trace components. The theoretical equations of flow FFF are summarized and expanded to include an explicit dependence on the Stokes radius. Several native proteins are retained. The retention is shown to be systematically controllable by changes in cross flow and the results are in quantitative agreement with theory. Fractograms of different rat plasmas are then shown to produce coincident peaks, while human plasma exhibits several systematic peak shifts with respect to the fractogram of the rat plasma. Finally, changes in the Stokes radii of ferritin peaks are shown after various forms of treatment with SDS. Flow FFF in this study demonstrates a capability of working with a mass range of ∼ 105 in a single run.  相似文献   

4.
A procedure is described for the determination of the Stokes radius of a detergent micelle by gel chromatography. It was observed that different lots of Sepharose 4B can exhibit a wide variation in the permeation of their gel pores. It is shown that this variation is due to differences in their pore size distribution. It has been observed that protein-sodium dodecyl sulfate (SDS) complexes of high Stokes radii eluted on a Sepharose 4B column with Stokes radii lower than the theoretical, as it has been previously reported but that protein-SDS complexes of low Stokes radii (less than 70 A), contrary to what might have been expected, eluted with Stokes radii higher than the theoretical. Evidence was obtained that their anomalous elution is due to an interaction of the detergent SDS with the gel pores of small diameter.  相似文献   

5.
Ribosomal proteins were extracted from 30 S subunits of Halobacterium marismortui under native conditions.Their separation was based on gel filtration and hydrophobic chromatography, performed at a concentration of 3.2 M KC1 to avoid denaturation. A total of nine proteins were isolated, purified and identified by partial amino-terminal sequences and two-dimension a gel electrophoresis. There is a high degree of sequence homology with 30 S proteins from H. cutirubrum, and also some with 30 (S) proteins of eubacteria.Proton NMR data indicate unfolding of the proteins in low salt. One of the proteins, however, retains its secondary structure at a salt concentration as low as 0.1 M NaCl, and even in 8 M urea. One reason for this outstanding stability could be the high proportion (50%) of β-structure in this protein as determined from circular dichroism measurements. In general, there is a higher β-sheet content than for 30 S proteins from Escherichia coli. Measurements of Stokes radii indicate several of the proteins to have a rather elongated shape. One of these is a complex consisting of L3/L4 and L20, similar to the LI-complex from E. co&.The presence of this 50 S complex in the preparation of the small subunit suggests a location on the interface between the subunits.  相似文献   

6.
The structural change that occurs in alpha-2-macroglobulin upon its interaction with methylamine or chymotrypsin was studied by high-performance gel chromatography and electron microscopy. The result enabled us to estimate the Stokes radius of the protein as 8.8 nm and 7.9 nm before and after binding with the proteinase, respectively. The methylamine-treated protein also had the Stokes radius of 7.9 nm. Similar studies on the chicken and crocodilian ovomacroglobulins showed that these homologues of alpha 2-macroglobulin had Stokes radii of 9.2-9.3 nm and 8.5-8.7 nm before and after binding with chymotrypsin. Their Stokes radii did not change as a result of the methylamine treatment. Electron micrographs of the native and altered forms of the three proteins are presented. This study introduces a simple and quantitative method to study the structural change of alpha 2-macroglobulin and its homologues.  相似文献   

7.
In this paper, we pioneer application of a unique method of protein determination by coloring peptide bonds for analysis of a variety of biomolecules with different grades of purity (e.g., oligopeptides, membrane, and glycol proteins). We demonstrated that the calibration curve for all studied molecules is universal and linear within 0.1 to 1.2 mg protein content range. The assay thus can be used to analyze peptides without preliminary dilutions and calibration in up to 1 g/ml solutions of peptides, which is crucial for many biotechnological processes, such as development of coatings, scaffolds, and biocompatible materials.  相似文献   

8.
Therapeutic proteins conjugated with branched poly(ethylene glycol) (PEG) have extended in vivo circulation half-lives compared to linear PEG-proteins, thought to be due partly to a greater hydrodynamic volume of branched PEG-proteins, which reduces the glomerular sieving coefficient. In this paper, viscosity radii of PEGylated alpha-lactalbumin (M(r) = 14.2 kDa) and bovine serum albumin (M(r) = 67 kDa) prepared with linear and branched PEGs (with nominal molecular weights 5, 10, 20 and 40 kDa) were compared experimentally using size exclusion chromatography (SEC). PEG adduct:protein molecular weight ratios of the PEGylated proteins covered the range 1:12 to 6:1. Direct comparisons of experimentally measured viscosity radii were found to be misleading due to differences between actual and nominal molecular weights of the PEG reagents used. Comparison with predicted viscosity radii shows that there is no significant difference between the viscosity radii of branched and linear PEG-proteins having the same total molecular weight of PEG adducts. Therefore, longer in vivo circulation half-lives of branched PEG-proteins compared to linear PEG-proteins are not explained by size difference. It is also calculated that the molecular size cut-off for glomerular filtration, 60 A for a 30 kDa PEG, matches the 30-50 A size range for the pores of the glomerular basement membrane. Finally, it is confirmed that prediction of PEG-protein viscosity radii should be based upon conservation of the total PEG adduct surface area to volume ratio for both linear and branched PEG-proteins regardless of PEGylation extent.  相似文献   

9.
The separation of proteins by gel-exclusion chromatography has been explained in terms of partitioning of the macromolecules within the gel by a distribution of pores of various radii. The assumption that the distribution of pore sizes is Gaussian has led to the prediction of a linear relationship between the molecular Stokes radius (RS) of the protein and the function erf-1 (1-KD), where KD is the partition coefficient [Ackers (1967) J. Biol. Chem. 242, 3237-3238]. Since careful calibrations of classical (agarose and dextran) gels and h.p.l.c. gels have shown that such a linear relationship is not verified experimentally over a wide range of native protein sizes, we have reinvestigated the model of Ackers (above reference). We show that Ackers' (above reference) derivation is not valid except for a particular Gaussian distribution of pore sizes centred at the origin. Relaxation of this restriction to allow for other types of Gaussian distributions cannot account for the non-linear calibration curves that we have obtained. Instead we show that the pore-size distribution can be calculated from the experimentally determined function KD = f(RS) and that this distribution is bimodal (non-Gaussian). One distribution is centred below 2 nm, whereas the mean value of the second one is around 6-8 nm. The minimum in this bimodal distribution corresponds, for some gels, to a region of poor resolution, which needs to be appreciated for the proper use of gel chromatography in the determination of molecular size.  相似文献   

10.
Human and rhesus A-I apolipoproteins, covalently labelled with dansyl chloride, were used in fluorescence polarization studies of: 1) the monomeric structure of the free proteins in solution; 2) the interaction of the apolipoproteins with sonicated egg phosphatidylcholine; and 3) the size of the saturated complexes of protein with phospholipid. The results indicate that both monomeric apolipoproteins have relatively rigid, yet asymmetrical structures, with Stokes radii of 24.2 ± 0.5 Å, in neutral aqueous solutions. Axial ratios are of the order of 61 or 41 for hydrated, prolate or oblate ellipsoids, respectively. A molar excess of about 200 phosphatidylcholine molecules are required to saturate each apolipoprotein. At saturation, the complexes with both proteins have Stokes radii of 40.6 ± 1.7 Å. Since the radius of phosphatidylcholine vesicles is around 125 Å, we conclude that the complexes are relatively small structures derived from disruption of the lipid vesicles, rather than from adsorption of the proteins on intact vesicles.  相似文献   

11.
Size exclusion chromatography is an established technique for the determination of hydrodynamic volumes of proteins or protein complexes. When applied to membrane proteins, the contribution of the detergent micelle, which is required to keep the protein soluble in the aqueous phase, needs to be determined to obtain accurate measurements for the protein. In a detergent series, in which the detergents differ only by the length of the alkyl chain, the contribution of the detergent micelle to the hydrodynamic volume is variable, whereas the contribution of the protein is constant. By using this approach, several parameters of membrane proteins can be estimated by extrapolation, such as the radius at the midpoint of the membrane, the average radius, the Stokes radius, and the excluded volume. The molecular mass of the protein can be determined by two independent measurements that arise from the behaviour of the free detergent micelle and protein-detergent micelle during size exclusion chromatography and the determination of the detergent-protein ratio. Determining the dimensions of protein-detergent micelles may facilitate membrane protein purification and crystallization by defining the accessibility of the protein surface.  相似文献   

12.
13.
The conformational transitions of bovine beta-lactoglobulin A and phosphoglycerate kinase from yeast induced by hexafluoroisopropanol (HFIP) and trifluoroethanol (TFE) have been studied by dynamic light scattering and circular dichroism spectroscopy in order to elucidate the potential of fluoroalcohols to bring about structural changes of proteins. Moreover, pure fluoroalcohol-water mixed solvents were investigated to prove the relation between cluster formation and the effects on proteins. The results demonstrate that cluster formation is mostly an accompanying phenomenon because important structural changes of the proteins occur well below the critical concentration of fluoroalcohol at which the formation of clusters sets in. According to our light scattering experiments, the remarkable potential of HFIP is a consequence of extensive preferential binding. Surprisingly, preferential binding seems to play a vanishing role in the case of TFE. However, the comparable Stokes radii of both proteins in the highly helical state induced by either HFIP or TFE point to a similar degree of solvation in both mixed solvents. This shows that direct binding or an indirect mechanism must be equally taken into consideration to explain the effects of alcohols on proteins. The existence of a compact helical intermediate with non-native secondary structure on the transition of beta-lactoglobulin A from the native to the highly helical state is clearly demonstrated.  相似文献   

14.
For structural studies of integral membrane proteins, including their 3D crystallization, the judicious use of detergent for solubilization and purification is required. Detergent binding by the solubilized protein is an important parameter to determine the hydrodynamic properties in terms of size and aggregational (monomeric/oligo(proto)meric) state of the protein. Detergent binding can be measured by gel filtration chromatography under equilibrium conditions and after separation from mixed micelles of solubilized lipid and detergent. Using sarcoplasmic reticulum Ca(2+)-ATPase as an example, we demonstrate in this protocol complete procedures for measurement of detergent binding using (i) radiolabeled n-dodecyl-beta-D-maltoside (DM) or (ii) from measurements of the increase in refractive index due to the presence of bound detergent on the protein. The latter measurement can also be performed by sedimentation velocity (SV) analysis in the analytical ultracentrifuge which in addition allows determination of the sedimentation coefficient. In combination with estimation of Stokes radius by gel filtration calibration, the molecular mass and asymmetry of the solubilized protein can be calculated. In the proposed protocols, the gel chromatographic procedures require 1 d; SV experiments are performed just after size exclusion. The whole time for these experiments is 24 h. Data analysis of analytical ultracentrifugation requires a couple of days.  相似文献   

15.
Purified calpains are capable of proteolyzing several high Mr nuclear proteins and solubilizing a histone H1 kinase activity from rat liver nuclei upon exposure to 10(-6) - 10(-5) M Ca2+. Major nuclear substrates displayed apparent molecular masses of 200, 130, 120, and 60 kDa on Coomassie Blue-stained SDS-PAGE gels. The nuclear proteins and the H1 kinase were released from Triton-treated nuclei following incubation with buffer containing 0.5 M NaCl. They therefore appeared to be internal nuclear matrix proteins. The nuclear H1 kinase activity solubilized by incubation with m-calpain was eluted in the void volume of a Bio-Gel A-1.5m column, indicating an apparent mass greater than 1,500 kDa. Treatment of the calpain-solubilized kinase with 0.5 M NaCl dissociated it to a form having an apparent mass of 300 kDa (Stokes radius = 5.6 nm), suggesting that the 300-kDa (Stokes radius = 5.6 nm), nuclei by calpain treatment as a large complex containing other internal matrix proteins. Purified human erythrocyte mu-calpain was capable of proteolyzing the nuclear matrix proteins at 10(-6) M Ca2+. In contrast, human erythrocyte multicatalytic protease complex produced little cleavage of the nuclear proteins. Proteolysis of nuclear proteins by either mu-calpain or m-calpain was inhibited by calpastatin. These experiments suggest a physiologic role for the calpains in the turnover of nuclear proteins.  相似文献   

16.
A novel Mr 28,000 erythrocyte transmembrane protein was recently purified and found to exist in two forms, "28kDa" and "gly28kDa," the latter containing N-linked carbohydrate (Denker, B. M., Smith, B. L., Kuhajda, F. P., and Agre, P. (1988) J. Biol. Chem. 263, 15634-15642). Although 28kDa protein resembles the Rh polypeptides biochemically, structural homologies were not identified by immunoblot or two-dimensional iodopeptide maps. The NH2-terminal amino acid sequence for the first 35 residues of purified 28kDa protein is 37% identical to the 26-kDa major intrinsic protein of lens (Gorin, M. B., Yancey, S. B., Cline, J., Revel, J.-P., and Horwitz, J. Cell 39, 49-59). Antisera to a synthetic peptide corresponding to the NH2-terminus of 28kDa protein gave a single reaction of molecular mass 28kDa on immunoblots of erythrocyte membranes. Selective digestions of intact erythrocytes and inside-out membrane vesicles with carboxypeptidase Y indicated the existence of a 5-kDa COOH-terminal cytoplasmic domain. Multiple studies indicated that 28kDa and gly28kDa proteins exist together as a multisubunit oligomer: 1) similar partial solubilizations in Triton X-100; 2) co-purification during ion exchange and lectin affinity chromatography; 3) cross-linking in low concentrations of glutaraldehyde; and 4) physical analyses of purified proteins and solubilized membranes in 1% (v/v) Triton X-100 showed 28kDa and gly28kDa proteins behave as a large single unit with Stokes radius of 61 A and sedimentation coefficient of 5.7 S. These studies indicate that the 28kDa and gly28kDa proteins are distinct from the Rh polypeptides and exist as a multisubunit oligomer. The 28kDa protein has NH2-terminal amino acid sequence homology and membrane organization similar to major intrinsic protein and other members of a newly recognized family of transmembrane channel proteins.  相似文献   

17.
Effective van der Waals radii were calibrated in such a way that molecular models built from standard bond lengths and bond angles reproduced the amino acid conformations observed by crystallography in proteins and peptides. The calibrations were based on the comparison of the Ramachandran plots prepared from high-resolution X-ray data of proteins and peptides with the allowed phi, psi torsional angle space for the dipeptide molecular models. The calibrated radii are useful as criteria with which to filter energetically improbable conformations in molecular modeling studies of proteins and peptides.  相似文献   

18.
We have reinvestigated the use of ionizing radiations to measure the molecular mass of water-soluble or membrane proteins. The test was performed by using the most straightforward aspect of the technique, which consists of SDS/PAGE analysis of the protein-fragmentation process. We found that exposure of purified standard proteins to increasing doses of ionizing radiation causes progressive fragmentation of the native protein into defined peptide patterns. The coloured band corresponding to the intact protein was measured on the SDS gel as a function of dose to determine the dose (D37.t) corresponding to 37% of the initial amount of unfragmented protein deposited on the gel. This led to a calibration curve between 1/D37.t and the known molecular mass of the standard proteins whose best fit gave Mr = 1.77 x 10(6)/D37.t at -78 degrees C, i.e. 35% higher than the generally accepted value at that temperature obtained from inactivation studies. However, we have to conclude that this method is useless to determine the state of aggregation of a protein, since, for all the oligomers tested, the best fit was obtained by using the protomeric molecular mass, suggesting that there is no energy transfer between promoters. Furthermore, SDS greatly increases the fragmentation rate of proteins, which suggests additional calibration problems for membrane proteins in detergent or in the lipid bilayer. But the main drawback of the technique arises from our observation that some proteins behaved anomalously, leading to very large errors in the apparent target size as compared with true molecular mass (up to 100%). It is thus unreliable to apply the radiation method for absolute molecular-mass determination. We then focused on the novel finding that discrete fragmentation of proteins occurs at preferential sites, and this was studied in more detail with aspartate transcarbamylase. N-Terminal sequencing of several radiolysis fragments of the catalytic chain of the enzyme revealed that breaks along the polypeptide chains are localized close to the C-terminal end. Examination of the three-dimensional structure of aspartate transcarbamylase suggests that radiolysis sites (fragile bonds) might be localized in connecting loops.  相似文献   

19.
In eukaryotic cells many cell surface proteins are attached to the membrane via the glycosylphosphatidylinositol (GPI) moiety. In yeast, GPI also plays important roles in the production of mannoprotein in the cell wall. We previously isolated gwt1 mutants and found that GWT1 is required for inositol acylation in the GPI biosynthetic pathway. In this study we isolated a new gwt1 mutant allele, gwt1-10, that shows not only high temperature sensitivity but also low temperature sensitivity. The gwt1-10 cells show impaired acyltransferase activity and attachment of GPI to proteins even at the permissive temperature. We identified TAT2, which encodes a high affinity tryptophan permease, as a multicopy suppressor of cold sensitivity in gwt1-10 cells. The gwt1-10 cells were also defective in the import of tryptophan, and a lack of tryptophan caused low temperature sensitivity. Microscopic observation revealed that Tat2p is not transported to the plasma membrane but is retained in the endoplasmic reticulum in gwt1-10 cells grown under tryptophan-poor conditions. We found that Tat2p was not associated with detergent-resistant membranes (DRMs), which are required for the recruitment of Tat2p to the plasma membrane. A similar result was obtained for Fur4p, a uracil permease localized in the DRMs of the plasma membrane. These results indicate that GPI-anchored proteins are required for the recruitment of membrane proteins Tat2p and Fur4p to the plasma membrane via DRMs, suggesting that some membrane proteins are redistributed in the cell in response to environmental and nutritional conditions due to an association with DRMs that is dependent on GPI-anchored proteins.  相似文献   

20.
Molecular chaperones are involved in protein folding, protein targeting to membranes, and protein renaturation after stress. They interact specifically with hydrophobic sequences that are exposed in unfolded proteins, and buried in native proteins. We have studied the interaction of DnaK with native water-soluble proteins and membrane proteins. DnaK–native protein interactions are characterized by dissociation constants between 1 and 50 μM (compared with 0.01–1 μM for unfolded proteins). This affinity is within the range of most intracellular protein concentrations, suggesting that DnaK interacts with a greater number of native proteins than previously suspected. We found a correlation between the affinity of native proteins for DnaK and their affinity for hydrophobic-interaction chromatography adsorbents, suggesting that DnaK interacts with exposed hydrophobic groups in native proteins. The interaction between DnaK and membrane proteins is characterized by DnaK's high affinity for detergent-solubilized membrane proteins, and its lower affinity for membrane proteins inserted in lipid bilayers, suggesting that the chaperone can interact with the hydrophobic sequences of the former, while it cannot penetrate the hydrophobic core of lipid bilayers. Thus, the specificity of DnaK for hydrophobic sequences is involved in its interaction with not only unfolded proteins, but also native water-soluble proteins and membrane proteins. All proteins interact with DnaK according to their exposed hydrophobicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号