首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
Direct clonal analysis of tissue and organ maturation in vivo is a critical step in the interpretation of in vitro cell precursor-progeny relationships. We have developed a method to analyze clonal progenitor contributions in vivo using ES cells stably expressing separate fluorescent proteins and placed into normal blastocysts to form tetrachimeras. Here we applied this method to the analysis of embryonic yolk sac blood islands. In most vertebrates, yolk sac blood islands are the initial sites of appearance of hematopoietic and endothelial cells. It has been proposed that these lineages arise from a common clonal progenitor, the hemangioblast, but this hypothesis has not been tested directly in physiological development in vivo. Our analysis shows that each island has contributions from multiple progenitors. Moreover, contribution by individual hemangioblast progenitors to both endothelial and hematopoietic lineages within an island, if it happens at all, is an infrequent event.  相似文献   

2.
3.
The hemangioblast in the mesoderm gives rise to both angioblasts and hematopoietic stem cells. The movement of hemangioblast precursor cells in the fetal trunk is a critical event in early embryogenesis. Vascular endothelial growth factor (VEGF) signaling is likely involved in this migration given the partial disturbance of VEGF receptor (VEGFR)-positive cell accumulation and migration in VEGFR2 null mice or mice with a truncated VEGFR1. However, it is not clear how the VEGF system regulates this migration or its direction. We show here that the expression of VEGF-A is dominant in the anterior portion of the embryo, whereas VEGFR1 and VEGFR2 are expressed in the posterior portion of the embryo. An inhibitor of VEGFR kinase blocked the migration of VEGFR-positive cells in a whole-embryo culture system. In addition, VEGFR-positive cells migrated toward a VEGFR1- or VEGFR2-specific ligand in vitro. Furthermore, VEGFR-positive cells derived from wild-type or VEGFR2(+/-) mice moved rapidly anteriorly, whereas cells derived from VEGFR2(+/-) mice carrying a truncated VEGFR1 [VEGFR1(TM-TK)(-/-)] migrated little when injected into wild-type mice. These results suggest that the VEGF-A protein concentrated in the anterior region plays an important role in the guidance of VEGFR-positive cells from the posterior portion to the head region by interacting with VEGFR in the mouse embryo.  相似文献   

4.
An SDF-1 trap for myeloid cells stimulates angiogenesis   总被引:9,自引:0,他引:9  
In this issue of Cell, Grunewald et al. (2005) examine the role of hematopoietic cells in the formation of new blood vessels. They show that organ-specific expression of vascular endothelial growth factor (VEGF) is sufficient to mobilize and recruit hematopoietic cells from the bone marrow to the blood, but retention of the proangiogenic subpopulation of hematopoietic cells in peripheral organs requires an additional factor, stromal-derived factor 1 (SDF-1).  相似文献   

5.
Activin is a potent inducer of mesoderm in amphibian embryos. We previously reported that low concentrations of activin could induce the formation of blood cells from Xenopus explants (animal caps). Both hematopoietic and vascular endothelial cell lineages are believed to share a common precursor, termed hemangioblasts. In this study, we tried to induce differentiation of vascular endothelial cells in aggregates derived from Xenopus animal caps. Aggregates formed from cells that were co-treated with activin and angiopoietin-2 expressed the vascular endothelial markers, X-msr, Xtie2 and Xegfl7. However, none of these aggregates expressed the hematopoietic marker genes, globin alpha T3, alpha T5, alpha A or GATA-1. We used microarray analysis to compare the gene expression profiles of aggregates treated with activin alone or with activin and angiopoietin. The combination, but not activin alone, induced expression of vascular-related genes such as Xl-fli and VEGF. These results demonstrate that treatment of dissociated animal cap cells with activin and angiopoietin-2 can induce differentiation of endothelial cells, and provides a promising model system for the in vitro study of blood vessel induction in vertebrates.  相似文献   

6.
During embryogenesis, endothelial cells are a source of hematopoietic cells. Vascular endothelial (VE)-cadherin modulates adherens junctions between endothelial cells. How endothelial cells, integrated into the vascular bed via adherens junctions, give rise to free-floating hematopoietic cells has been examined. Contrary to our previous reports, in this report a cell type simultaneously expressing VE-cadherin and the hematopoietic marker CD45 was identified, without rigorous enzymatic dissociation of embryonic tissues. In spite of expressing several other endothelial markers such as endothelial cell nitrous oxide synthase (ECNOS) and MECA-32, this newly defined population failed to produce endothelial colonies when cultured on OP9 stroma, in direct contrast to enzymatically dissociated VE-cadherin+ cells. When isolated from 9.5 days post coitus (d.p.c.) embryos, VE-cadherin+ CD45+ cells generated erythroid, myeloid, but not B lymphoid, cells, also in contrast to VE-cadherin+ cells obtained by enzymatic dissociation. Runx1 null mutant embryos lacked this novel population. Collectively, these results introduce a novel VE-cadherin+ population within the developing embryo, which may represent an intermediate cell type in the transition of hemogenic endothelial cells into blood.  相似文献   

7.
8.
9.
Previous study has suggested that distinct populations of myeloid cells exist in the anterior ventral blood islands (aVBI) and posterior ventral blood islands (pVBI) in Xenopus neurula embryo. However, details for differentiation programs of these two populations have not been elucidated. In the present study, we examined the role of Wnt, vascular endothelial growth factor (VEGF) and fibroblast growth factor signals in the regulation of myeloid cell differentiation in the dorsal marginal zone and ventral marginal zone explants that are the sources of myeloid cells in the aVBI and pVBI. We found that regulation of Wnt activity is essential for the differentiation of myeloid cells in the aVBI but is not required for the differentiation of myeloid cells in the pVBI. Endogenous activity of the VEGF signal is necessary for differentiation of myeloid cells in the pVBI but is not involved in the differentiation of myeloid cells in the aVBI. Overall results reveal that distinct mechanisms are involved in the myeloid, erythroid and endothelial cell differentiation in the aVBI and pVBI.  相似文献   

10.
11.
BACKGROUND: CD133 is a newly developed hematopoietic stem cell marker but little is known about its function. Whether CD133(+) cell selection provides any advantage over CD34(+) selection for hematopoietic stem cell isolation and transplantation is unclear. The present study compared colony formation and endothelial cell differentiation of these two cell types from umbilical cord blood (UCB). METHODS: Mononuclear cells from the same UCB samples were used for both CD133(+) and CD34(+) cell selection. Cells with 97.1% purity were incubated in semi-solid culture medium containing stem cell growth factor (SCGF) and G-CSF or erythropoietin (EPO). Purified cells were also cultured in M199 containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor-1 (IGF-1). RESULTS: CD34(+) and CD133(+) cells produced similar numbers of CFU-GM colonies (median 43.25 and 30.5, respectively; P>0.2). However, a greater than four-fold difference in BFU-E colony formation was observed from CD34(+) cells compared with CD133(+) cells (median 35 and 8, respectively; P<0.04). CD34(+) cells gave rise to endothelial-like cells when stimulated with VEGF, bFGF and IGF-1. CD133(+) cells were unable produce this cell type under the same conditions. DISCUSSION: CD133(+) cells produced smaller BFU-E colonies and were unable to differentiate into mature endothelial cells. CD34(+) cells contained endothelial progenitors that could differentiate into mature cells of this lineage. Based on these data, it appears that CD133 offers no distinct advantage over CD34 as a selective marker for immunoaffinity-based isolation of hematopoietic stem cells and endothelial progenitor cells.  相似文献   

12.
13.
Vascular endothelial growth factor (VEGF) induces the proliferation of endothelial cells and is a potent angiogenic factor that binds to heparin. We have therefore studied the effect of heparin upon the interaction of VEGF with its receptors. Heparin, at concentrations ranging from 0.1 to 10 micrograms/ml, strongly potentiated the binding of 125I-VEGF to its receptors on endothelial cells. Scatchard analysis of 125I-VEGF binding indicates that 1 microgram/ml heparin induces an 8-fold increase in the apparent density of high affinity binding sites for VEGF, but does not significantly affect the dissociation constant of VEGF. Cross-linking experiments showed that heparin strongly potentiates the formation of the 170-, 195- and 225-kDa 125I-VEGF-receptor complexes on endothelial cells. At high 125I-VEGF concentrations (4 ng/ml), heparin preferentially enhanced the formation of the 170- and 195-kDa complexes. Preincubation of the cells with heparin, followed by extensive washes, produced a similar enhancement of subsequent 125I-VEGF binding. The binding of 125I-VEGF was completely inhibited following digestion of endothelial cells with heparinase and could be restored by the addition of exogenous heparin to the digested cells. The enhancing effect of heparin facilitated the detection of VEGF receptors on cell types that were not known previously to express such receptors. Our results suggest that cell surface-associated heparin-like molecules are required for the interaction of VEGF with its cell surface receptors.  相似文献   

14.
In some capillary beds, pericytes regulate endothelial growth. Capillaries with high filtration capacity, such as those in renal glomeruli, lack pericytes. Glomerular endothelium lies adjacent to visceral epithelial cells (podocytes) that are anchored to and cover the anti-luminal surface of the basement membrane. We have tested the hypothesis that podocytes can function as endothelial supporting cells. Endothelial cells were outgrown from circulating endothelial progenitors of normal subjects and were extensively characterized. These blood outgrowth endothelial cells (BOECs) expressed endothelial markers, lacked stem cell markers, and expressed the angiopoietin-1 receptor, Tie-2, and the vascular endothelial growth factor (VEGF) receptor, Flk-1. Differentiated podocytes in culture expressed and secreted VEGF, which was upregulated 4.5-fold by high glucose. In complete medium, BOECs formed thin cell-cell connections and multicellular tubes on Matrigel, the in vitro correlate of angiogenesis. This was impaired in deficient media but rescued by co-incubation with Transwell Anopore inserts containing differentiated podocytes. To assess whether VEGF was the major podocyte-derived signal that rescued BOEC angiogenesis, we examined angiogenesis of control and Flk-1-deficient BOECs. Co-incubation with podocytes or addition of recombinant VEGF each rescued angiogenesis in control BOECs, but both failed to support maintenance and angiogenesis in Flk-1-deficient BOECs. Finally, co-culture with podocytes increased BOEC-proliferation. In concert, these findings suggest a model in which glomerular visceral epithelial cells function as pericyte-like endothelial supporting cells. Podocyte-derived VEGF is a required and sufficient regulator of vascular endothelial maintenance, and its upregulation in podocytes by high glucose may be the mechanism for the increased glomerular angiogenesis that is observed in vivo in early diabetic glomerular injury. These studies were supported by grants from the National Institutes of Health (NIH-NIDDK 63360) and the Juvenile Diabetes Research Foundation (JDRF-1-2004-78).  相似文献   

15.
Vascular endothelial growth factor (VEGF) receptor-2/kinase insert domain-containing receptor (KDR) is expressed in primitive hematopoietic cells, in megakaryocytes and platelets. In primitive hematopoiesis KDR mediates cell survival via autocrine VEGF, while its effect on cell growth and differentiation has not been elucidated. We induced enforced KDR expression in the granulocyte macrophage-colony-stimulating factor (GM-CSF)-dependent TF1 progenitor cell line (TF1-KDR), treated the cells with VEGF and analyzed their response. In GM-CSF-deprived cells, VEGF induces cell proliferation and protection against apoptosis, followed by enhanced expression of megakaryocytic (MK) markers. Combined with GM-CSF, VEGF induces a mild proliferative stimulus, followed by cell adherence, accumulation in G0/G1, massive MK differentiation and Fas-mediated apoptosis. Accordingly, we observed that MK-differentiating cells, derived from hematopoietic progenitors, produce VEGF, express KDR, inhibition of which reduces MK differentiation, indicating a key role of KDR in megakaryopoiesis. In conclusion, TF1-KDR cells provide a reliable model to investigate the biochemical and molecular mechanisms underlying hematopoietic progenitor proliferation, survival and MK differentiation.  相似文献   

16.
《遗传学报》2020,47(5):249-261
Interspecies chimera through blastocyst complementation could be an alternative approach to create human organs in animals by using human pluripotent stem cells.A mismatch of the major histocompatibility complex of vascular endothelial cells between the human and host animal will cause graft rejection in the transplanted organs.Therefore,to achieve a transplantable organ in animals without rejection,creation of vascular endothelial cells derived from humans within the organ is necessary.In this study,to explore whether donor xeno-pluripotent stem cells can compensate for blood vasculature in host animals,we generated rat-mouse chimeras by injection of rat embryonic stem cells(rESCs) into mouse blastocysts with deficiency of Flk-1 protein,which is associated with endothelial and hematopoietic cell development.We found that rESCs could differentiate into vascular endothelial and hematopoietic cells in the rat-mouse chimeras.The whole yolk sac(YS) of Flk-1~(EGFP/ECFP) rat-mouse chimera was full of rat blood vasculature.Rat genes related to vascular endothelial cells,arteries,and veins,blood vessels formation process,as well as hematopoietic cells,were highly expressed in the YS.Our results suggested that rat vascular endothelial cells could undergo proliferation,migration,and self-assembly to form blood vasculature and that hematopoietic cells could differentiate into B cells,T cells,and myeloid cells in rat-mouse chimeras,which was able to rescue early embryonic lethality caused by Flk-1 deficiency in mouse.  相似文献   

17.
18.
Blood and blood vessels develop in close association in vertebrate embryos and loss-of-function mutations suggest common genetic regulation. By the criteria of co-expression of blood and endothelial genes, and lineage tracing of progeny, we locate two distinct populations of progenitors for blood and endothelial cells in developing Xenopus embryos. The first population is located immediately posterior to the cement gland during neurula stages and gives rise to embryonic blood and vitelline veins in the anterior ventral blood island (aVBI), and to the endocardium of the heart. The second population resides in the dorsal lateral plate mesoderm, and contains precursors of adult blood stem cells and the major vessels. Both populations differentiate into endothelial cells in situ but migrate to new locations to differentiate into blood, suggesting that their micro-environments are unsuitable for haematopoietic differentiation. Both require BMP for their formation, even the Spemann organiser-derived aVBI, but individual genes are affected differentially. Thus, in the embryonic population, expression of the blood genes, SCL and GATA2, depend on BMP signalling while expression of the endothelial gene, Xfli1, does not. By contrast, Xfli1 expression in the adult, DLP population does require BMP. These results indicate that both adult and the anterior component of embryonic blood in Xenopus embryos derive from populations of progenitors that also give rise to endothelial cells. However, the two populations give rise to distinct regions of the vasculature and are programmed differentially by BMP.  相似文献   

19.
We show that a vascular endothelial growth factor (VEGF) pathway controls embryonic migrations of blood cells (hemocytes) in Drosophila. The VEGF receptor homolog is expressed in hemocytes, and three VEGF homologs are expressed along hemocyte migration routes. A receptor mutation arrests progression of blood cell movement. Mutations in Vegf17E or Vegf27Cb have no effect, but simultaneous inactivation of all three Vegf genes phenocopied the receptor mutant, and ectopic expression of Vegf27Cb redirected migration. Genetic experiments indicate that the VEGF pathway functions independently of pathways governing hemocyte homing on apoptotic cells. The results suggest that the Drosophila VEGF pathway guides developmental migrations of blood cells, and we speculate that the ancestral function of VEGF pathways was to guide blood cell movement.  相似文献   

20.
The vasculature of the embryo requires vascular endothelial growth factor (VEGF) during development, but most adult blood vessels lose VEGF dependence. However, some capillaries in the respiratory tract and selected other organs of adult mice regress after VEGF inhibition. The present study sought to identify the sequence of events and the fate of endothelial cells, pericytes, and vascular basement membrane during capillary regression in mouse tracheas after VEGF signaling was blocked with a VEGF-receptor tyrosine kinase inhibitor AG-013736 or soluble receptor construct (VEGF Trap or soluble adenoviral VEGFR-1). Within 1 day, patency was lost and fibrin accumulated in some tracheal capillaries. Apoptotic endothelial cells marked by activated caspase-3 were present in capillaries without blood flow. VEGF inhibition was accompanied by a 19% decrease in tracheal capillaries over 7 days and 30% over 21 days. During this period, desmin/NG2-immunoreactive pericytes moved away from regressing capillaries onto surviving vessels. Empty sleeves of basement membrane, left behind by regressing endothelial cells, persisted for about 2 wk and served as a scaffold for vascular regrowth after treatment ended. The amount of regrowth was limited by the number of surviving basement membrane sleeves. These findings demonstrate that, after inhibition of VEGF signaling, some normal capillaries regress in a systematic sequence of events initiated by a cessation of blood flow and followed by apoptosis of endothelial cells, migration of pericytes away from regressing vessels, and formation of empty basement membrane sleeves that can facilitate capillary regrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号