首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Defective receptor editing or defective B cell checkpoints have been associated with increased frequency of multireactive autoantibodies in autoimmune disease. However, Ig somatic hypermutation and/or class switch recombination may be mechanisms enabling the development of pathogenic multireactive autoantibodies. In this study, we report that, in the BXD2 mouse model of autoimmune disease, elevated expression of activation-induced cytidine deaminase (AID) in recirculating follicular CD86(+) subsets of B cells and increased germinal center B cell activity are associated with the production of pathogenic multireactive autoantibodies. CD4 T cells from BXD2 mice that expressed increased levels of CD28 and an increased proliferative response to anti-CD3 and anti-CD28 stimulation are required for this process. Inhibition of the CD28-CD86 interaction in BXD2 mice with AdCTLA4-Ig resulted in normalization of AID in the B cells and suppression of IgG autoantibodies. This treatment also prevented the development of germinal center autoantibody-producing B cells, suggesting that an optimal microenvironment enabling AID function is important for the formation of pathogenic autoantibodies. Taken together, our data indicate that AID expression in B cells is a promising therapeutic target for the treatment of autoimmune diseases and that suppression of this gene may be a molecular target of CTLA4-Ig therapy.  相似文献   

3.
Highlights
1. Class-switch recombination was mimicked in hybridomas through a controllable expression system of activation-induced cytidine deaminase.
2. IgG antibodies were generated through this system in an anti-Flu B IgM hybridoma 7G1.
3. IgG1 and IgG2a subtypes of 7G1 present improved antiviral activity in vitro and in vivo.  相似文献   

4.
5.
We have identified a novel gene referred to as activation-induced deaminase (AID) by subtraction of cDNAs derived from switch-induced and uninduced murine B lymphoma CH12F3-2 cells, more than 80% of which switch exclusively to IgA upon stimulation. The amino acid sequence encoded by AID cDNA is homologous to that of apolipoprotein B (apoB) mRNA-editing enzyme, catalytic polypeptide 1 (APOBEC-1), a type of cytidine deaminase that constitutes a catalytic subunit for the apoB mRNA-editing complex. In vitro experiments using a glutathione S-transferase AID fusion protein revealed significant cytidine deaminase activity that is blocked by tetrahydrouridine and by zinc chelation. However, AID alone did neither demonstrate activity in C to U editing of apoB mRNA nor bind to AU-rich RNA targets. AID mRNA expression is induced in splenic B cells that were activated in vitro or by immunizations with sheep red blood cells. In situ hybridization of immunized spleen sections revealed the restricted expression of AID mRNA in developing germinal centers in which modulation of immunoglobulin gene information through somatic hypermutation and class switch recombination takes place. Taken together, these findings suggest that AID is a new member of the RNA-editing deaminase family and may play a role in genetic events in the germinal center B cell.  相似文献   

6.
7.
8.
9.
10.
11.
Within inflammatory environments, B cells encountering foreign or self-Ag can develop tertiary lymphoid tissue expressing activation-induced cytosine deaminase (AID). Recently, this DNA-modifying enzyme was detected in nonlymphoid cells within several inflamed tissues and strongly implicated in malignant transformation. This study examines whether a cyclooxygenase 2 (COX-2) pathway, often linked to inflammation, influences AID expression in activated B lymphocytes. In this paper, we report that dividing human B cells responding to surrogate C3d-coated Ag, IL-4, and BAFF express AID, as well as COX-2. A progressive increase in AID with each division was paralleled by a division-related increase in a COX-2-linked enzyme, microsomal PGE(2) synthase-1, and the PGE(2)R, EP2. Cells with the greatest expression of AID expressed the highest levels of EP2. Although COX-2 inhibitors diminished both AID expression and IgG class switching, exogenous PGE(2) and butaprost, a selective EP2 agonist, augmented AID mRNA/protein and increased the numbers of IgG(+) progeny. Despite the latter, the proportion of IgG(+) cells within viable progeny generally declined with PGE(2) supplementation. This was not due to PGE(2)-promoted differentiation to plasma cells or to greater downstream switching. Rather, because phosphorylated ataxia telangiectasia mutated levels were increased in progeny of PGE(2)-supplemented cultures, it appears more likely that PGE(2) facilitates AID-dependent DNA double-strand breaks that block B cell cycle progression or promote activation-induced cell death, or both. Taken together, the results suggest that a PGE(2) feed-forward mechanism for augmenting COX-2 pathway proteins promotes progressively increased levels of AID mRNA, protein, and function.  相似文献   

12.
As in mammals, B cell maturation in the amphibian Xenopus involves somatic hypermutation (SHM) and class switch recombination to diversify the B cell receptor repertoire in response to Ag stimulation. Unlike mammals, however, the resulting increase in Ab affinity is poor in Xenopus, which is possibly related to the absence of germinal centers and a suboptimal selection mechanism of SHM. In mammals, both SHM and class switch recombination are mediated by the activation-induced cytidine deaminase enzyme and under Ag-dependent regulation. Given its evolutionary conservation in jawed vertebrates, we used activation-induced cytidine deaminase as a marker to monitor and localize B cell maturation in Xenopus upon immune responses and during early development. In adult, Xenopus laevis AID (XlAID) was detected mainly in the spleen, where cells expressing XlAID were preferentially distributed in follicular B cell zones, although some XlAID(+) cells were also found in the red pulp. XlAID was markedly up-regulated in the spleen with different kinetics upon bacterial stimulation and viral infection. However, during secondary anti-viral response XlAID was also noticeably expressed by PBLs, suggesting that XlAID remains active in a subset of circulating B cells. During ontogeny, XlAID expression was detected as early as 5 days postfertilization in liver before the first fully differentiated B cells appear. Concomitant with appearance of mature B cells XlAID was up-regulated upon bacterial stimulation or viral infection at later larval stages. This study highlights the conserved involvement of XlAID during Ag-dependent B cell responses in Xenopus but also suggests another role in B cell differentiation earlier in ontogeny.  相似文献   

13.
Covalently closed circular DNA (cccDNA) forms a template for the replication of hepatitis B virus (HBV) and duck HBV (DHBV). Recent studies suggest that activation-induced cytidine deaminase (AID) functions in innate immunity, although its molecular mechanism of action remains unclear, particularly regarding HBV restriction. Here we demonstrated that overexpression of chicken AID caused hypermutation and reduction of DHBV cccDNA levels. Inhibition of uracil-DNA glycosylase (UNG) by UNG inhibitor protein (UGI) abolished AID-induced cccDNA reduction, suggesting that the AID/UNG pathway triggers the degradation of cccDNA via cytosine deamination and uracil excision.  相似文献   

14.
The gene encoding activation-induced cytidine deaminase (AID), a member of the cytidine deaminase family, was isolated from a murine B cell lymphoma line, CH12F3-2, induced by combined stimulation of TGF-beta, IL-4, and CD40L. We have isolated the human orthologue of mouse AID cDNA, which has an open reading frame of 198 residues containing a conserved cytidine deaminase motif. The amino acid sequence of human AID is 92% identical to that of mouse AID. RT-PCR analysis of 15 human tissues showed that AID mRNA is expressed strongly in lymph nodes and tonsils. The complete human AID gene consisting of five exons was isolated and mapped to chromosome 12p13 by fluorescence in situ hybridization.  相似文献   

15.
The complementary DNA (cDNA) coding for Arabidopsis thaliana cytidine deaminase 1 (AT-CDA1) was obtained from the amplified A. thaliana cDNA expression library, provided by R. W. Davis (Stanford University, CA). AT-CDA1 cDNA was subcloned into the expression vector pTrc99-A and the protein, expressed in Escherichia coli following induction with isopropyl 1-thio-beta-d-galactopyranoside, showed high cytidine deaminase activity. The nucleotide sequence showed a 903-bp open reading frame encoding a polypeptide of 301 amino acids with a calculated molecular mass of 32,582. The deduced amino acid sequence of AT-CDA1 showed no transit peptide for targeting to the chloroplast or mitochondria indicating that this form of cytidine deaminase is probably expressed in the cytosol. The recombinant AT-CDA1 was purified to homogeneity by a heat treatment followed by an ion-exchange chromatography. The final enzyme preparation was >98% pure as judged by SDS-PAGE and showed a specific activity of 74 U/mg. The molecular mass of AT-CDA1 estimated by gel filtration was 63 kDa, indicating, in contrast to the other eukaryotic CDAs, that the enzyme is a dimer composed of two identical subunits. Inductively coupled plasma-optical emission spectroscopy analysis indicated that the enzyme contains 1 mol of zinc atom per mole of subunit. The kinetic properties of AT-CDA1 both toward the natural substrates and with analogs indicated that the catalytic mechanism of the plant enzyme is probably very similar to that of the human the E. coli enzymes.  相似文献   

16.
Affinity maturation of the Ab repertoire in germinal centers leads to the selection of high affinity Abs with selected heavy chain constant regions. Ab maturation involves two modifications of the Ig genes, i.e., somatic hypermutation and class switch recombination. The mechanisms of these two processes are not fully understood. As shown by the somatic hypermutation and class switch recombination-deficient phenotype of activation-induced cytidine deaminase (AID)-deficient patients (hyperIgM type 2 syndrome) and mice, both processes require the AID molecule. Somatic DNA modifications require DNA breaks, which, at least for class switch recombination, lead to dsDNA breaks. By using a ligation-mediated PCR, it was found that class switch recombination-induced dsDNA breaks in S mu switch regions were less frequent in AID-deficient B cells than in AID-proficient B cells, thus indicating that AID acts upstream of DNA break induction.  相似文献   

17.
Activation-induced cytidine deaminase (AID) plays critical roles in Ig class switch recombination and V(H) gene somatic hypermutation. We investigated the role of IL-4 in AID mRNA induction, the signaling transduction involved in IL-4-mediated AID induction, and the effect of CD45 on IL-4-dependent AID expression in human B cells. IL-4 was able to induce AID expression in human primary B cells and B cell lines, and IL-4-induced AID expression was further enhanced by CD40 signaling. IL-4-dependent AID induction was inhibited by a dominant-negative STAT6, indicating that IL-4 induced AID expression via the Janus kinase (JAK)/STAT6 signaling pathway. Moreover, triggering of CD45 with anti-CD45 Abs can inhibit IL-4-induced AID expression, and this CD45-mediated AID inhibition correlated with the ability of anti-CD45 to suppress IL-4-activated JAK1, JAK3, and STAT6 phosphorylations. Thus, in humans, IL-4 alone is sufficient to drive AID expression, and CD40 signaling is required for optimal AID production; IL-4-induced AID expression is mediated via the JAK/STAT signaling pathway, and can be negatively regulated by the JAK phosphatase activity of CD45. This study indicates that the JAK phosphatase activity of CD45 can be induced by anti-CD45 Ab treatment, and this principle may find clinical application in modulation of JAK activation in immune-mediated diseases.  相似文献   

18.
19.
Members of the T cell Ig and mucin (TIM) family have recently been implicated in the control of T cell-mediated immune responses. In this study, we found TIM-1 expression on anti-IgM- or anti-CD40-stimulated splenic B cells, which was further up-regulated by the combination of anti-IgM and anti-CD40 Abs. On the other hand, TIM-1 ligand was constitutively expressed on B cells and inducible on anti-CD3+ anti-CD28-stimulated CD4+ T cells. In vitro stimulation of activated B cells by anti-TIM-1 mAb enhanced proliferation and expression of a plasma cell marker syndecan-1 (CD138). We further examined the effect of TIM-1 signaling on antibody production in vitro and in vivo. Higher levels of IgG2b and IgG3 secretion were detected in the culture supernatants of the anti-TIM-1-stimulated B cells as compared with the control IgG-stimulated B cells. When immunized with T-independent antigen TNP-Ficoll, TNP-specific IgG1, IgG2b, and IgG3 Abs were slightly increased in the anti-TIM-1-treated mice. When immunized with T-dependent antigen OVA, serum levels of OVA-specific IgG2b, IgG3, and IgE Abs were significantly increased in the anti-TIM-1-treated mice as compared with the control IgG-treated mice. These results suggest that TIM-1 signaling in B cells augments antibody production by enhancing B cell proliferation and differentiation.  相似文献   

20.
In the absence of core nonhomologous end-joining (NHEJ) factors, Ab gene class-switch recombination (CSR) uses an alternative end-joining (A-EJ) pathway to recombine switch (S) region DNA breaks. Previous reports showing decreased S-junction microhomologies in MSH2-deficient mice and an exonuclease 1 (EXO1) role in yeast microhomology-mediated end joining suggest that mismatch repair (MMR) proteins might influence A-EJ-mediated CSR. We have directly investigated whether MMR proteins collectively or differentially influence the A-EJ mechanism of CSR by analyzing CSR in mice deficient in both XRCC4 and individual MMR proteins. We find CSR is reduced and that Igh locus chromosome breaks are reduced in the MMR/XRCC4 double-deficient B cells compared with B cells deficient in XRCC4 alone, suggesting MMR proteins function upstream of double-strand break formation to influence CSR efficiency in these cells. Our results show that MLH1, EXO1, and MSH2 are all important for efficient A-EJ-mediated CSR, and we propose that MMR proteins convert DNA nicks and point mutations into dsDNA breaks for both C-NHEJ and A-EJ pathways of CSR. We also find Mlh1-XRCC4(-) B cells have an increased frequency of direct S junctions, suggesting that MLH1 proteins may have additional functions that influence A-EJ-mediated CSR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号