首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon monoxide dehydrogenase was purified to apparent homogeneity from Methanothrix soehngenii. In contrast with the carbon monoxide dehydrogenases from most other anaerobic bacteria, the purified enzyme of Methanothrix soehngenii was remarkably stable towards oxygen and it was only slightly inhibited by cyanide. The native molecular mass of the carbon monoxide dehydrogenase of Methanothrix soehngenii determined by gel filtration was 190 kDa. The enzyme is composed of subunits with molecular mass of 79.4 kDa and 19.4 kDa in an alpha 2 beta 2 oligomeric structure. The enzyme contains 1.9 +/- 0.2 (n = 3) mol Ni/mol and 19 +/- 3 (n = 3) mol Fe/mol and it constitutes 4% of the soluble cell protein. Analysis of enzyme kinetic properties revealed a Km of 0.7 mM for CO and of 65 microM for methyl viologen. At the optimum pH of 9.0 the Vmax was 140 mumol of CO oxidized min-1 mg protein-1. The enzyme showed a high degree of thermostability.  相似文献   

2.
Carbon monoxide dehydrogenase and methyl-coenzyme M reductase were purified from 61Ni-enriched and natural-abundance nickel-grown cells of the methanogenic archae Methanothrix soehngenii. The nickel-EPR signal from cofactor F-430 in methyl-CoM reductase was of substoichiometric intensity and exhibited near-axial symmetry with g = 2.153, 2.221 and resolved porphinoid nitrogen superhyperfine splittings of approximately 1 mT. In the spectrum from 61Ni-enriched enzyme a well-resolved parallel I = 3/2 nickel hyperfine splitting was observed, A parallel = 4.4 mT. From a computer simulation of this spectrum the final enrichment in 61Ni was estimated to be 69%, while the original enrichment of the nickel metal was 87%. Carbon monoxide dehydrogenase isolated from the same batch exhibited four different EPR spectra. However, in none of these signals could any splitting or broadening from 61Ni be detected. Also, the characteristic g = 2.08 EPR signal found in some other carbon monoxide dehydrogenases and ascribed to a Ni-Fe-C complex, was never observed by us under any conditions of detection (4 to 100 K) and incubation in the presence of ferricyanide, dithionite, CO, coenzyme A, or acetyl-coenzyme A. Novel, high-spin EPR was found in the oxidized enzyme with effective g-values at g = 14.5, 9.6, 5.5, 4.6, 4.2, 3.8. The lines at g = 14.5 and 5.5 were tentatively ascribed to an S = 9/2 system (approximately 0.3 spins/alpha beta) with rhombicity E/D = 0.047 and D less than 0. The other signals were assigned to an S = 5/2 system (0.1 spins/alpha beta) with E/D = 0.27. Both sets of signals disappear upon reduction with Em,7.5 = - 280 mV. With a very similar reduction potential, Em,7.5 = - 261 mV, an S = 1/2 signal (0.1 spins/alpha beta) appears with the unusual g-tensor 2.005, 1.894, 1.733. Upon further lowering of the potential the putative double cubane signal also appears. At a potential E approximately - 320 mV the double cubane is only reduced by a few percent and this allows the detection of individual cubane EPR not subjected to dipolar interaction; a single spectral component is observed with g-tensor 2.048, 1.943, 1.894.  相似文献   

3.
Abstract Methanobacterium thermoautotrophicum was grown in a fermenter gassed with an 80% H2/20% CO2 mixture. The effluent gas was found to contain between 30 ppm and 90 ppm carbon monoxide. Approx. 5 nmol CO were produced per min and mg cells (dry weight) by the culture. This is to our knowledge the first report on biological carbon monoxide formation under strictly anaerobic conditions.  相似文献   

4.
Carbon monoxide (CO) dehydrogenase was purified, both aerobically and anaerobically, to apparent homogeneity from Methanothrix soehngenii. The enzyme contained 18 +/- 2 (n = 6) mol Fe/mol and 2.0 +/- 0.1 (n = 6) mol Ni/mol. Electron paramagnetic resonance (EPR) spectra of the aerobically purified CO dehydrogenase showed one sharp EPR signal at g = 2.014 with several characteristics of a [3Fe-4S]1+ cluster. The integrated intensity of this signal was low, 0.03 S = 1/2 spin/alpha beta dimer. The 3Fe spectrum was not affected by incubation with CO or acetyl-coenzyme A, but could be reduced by dithionite. The spectrum of the reduced, aerobically purified enzyme showed complex EPR spectra, which had several properties typical of two [4Fe-4S]1+ clusters, whose S = 1/2 spins weakly interacted by dipolar coupling. The integrated intensity was 0.1-0.2 spin/alpha beta dimer. The anaerobically isolated enzyme showed EPR spectra different from the reduced aerobically purified enzyme. Two major signals were apparent. One with g values of 2.05, 1.93 and 1.865, and an Em7.5 of -410 mV, which quantified to 0.9 S = 1/2 spin/alpha beta dimer. The other signal with g values of 1.997, 1.886 and 1.725, and an Em7.5 of -230 mV gave 0.1 spin/alpha beta dimer. When the enzyme was incubated with its physiological substrate acetyl-coenzyme A, these two major signals disappeared. Incubation of the enzyme under CO atmosphere resulted in a partial disappearance of the spectral component with g = 1.997, 1.886, 1.725. Acetyl-coenzyme A/CO exchange activity, 35 nmol.min-1.mg-1 protein, which corresponded to 7 mol CO exchanged min-1 mol-1 enzyme, could be detected in anaerobic enzyme preparations, but was absent in aerobic preparations. Carbon dioxide also exchanged with C-1 of acetyl-coenzyme A, but at a much lower rate than CO and to a much lower extent.  相似文献   

5.
The cdhA and cdhB genes that code for the large and the small subunits of carbon monoxide dehydrogenase (CDH), respectively, were isolated from a genomic library of Methanothrix soehngenii DNA in Escherichia coli, using polyclonal antibodies raised against purified CDH. After introduction in E. coli or Desulfovibrio vulgaris, the cdh genes appeared to be expressed irrespective of their orientation, yielding immunoreactive proteins of 79 and 19 kDa, corresponding in size to the known subunits of purified CDH. However, no CDH activity could be detected in these heterologous hosts. The cdh genes are preceded by consensus ribosome-binding sites and are arranged in an operon-like structure, with cdhA preceding cdhB. Upstream from this operon, sequences similar to archaeal promoters were identified. The amino acid sequence, deduced from the primary sequence of cdhA, showed homology with ferredoxins and with acyl-CoA oxidase. This is compatible with the proposed functions of CDH.  相似文献   

6.
7.
8.
A new genus of methanogenic bacteria is described, which was isolated from a mesophilic sewage digester. It is most probably the filamentous bacterium, earlier referred to asMethanobacterium soehngenii, fat rod or acetate organism. The single non-motile, non-sporeforming cells are rod-shaped (0.8×2 m) and are normally combined end to end in long filaments, surrounded by a sheath-like structure. The filaments form characteristic bundles.Methanothrix soehngenii decarboxylates acetate, yielding methane and carbon dioxide. Other methanogenic substrates (H2–CO2, formate, methanol, methylamines) are not used for growth or methane formation. Formate is split into hydrogen and carbon dioxide. The temperature optimum for growth and methane formation is 37°C and the optimal pH range is 7.4–7.8. Sulfide and ammonia serve as sulfur and nitrogen source respectively. Oxygen completely inhibits growth and methane formation, but the bacteria do not loose their viability when exposed to high oxygen concentrations. 100 mg/l vancomycin showed no inhibition of growth and methanogenesis. No growth and methane formation was observed in the presence of: 2-bromoethanesulfonic acid, viologen dyes, chloroform, and KCN. The bacterium has a growth yield on acetate of 1.1–1.4 g biomass per mol acetate. The apparent K S of the acetate conversion system to methane and carbon dioxide is 0.7 mmol/l. The DNA base composition is 51.9 mol% guanine plus cytosine. The nameMethanothrix is proposed for this new genus of filamentous methane bacterium. The type species,Methanothrix soehngenii sp. nov., is named in honor of N. L. Söhngen.  相似文献   

9.
Abstract The methyl-CoM reductase from Methanothrix soehngenii was purified 18-fold to apparent homogeneity with 50% recovery in three steps. The native molecular mass of the enzyme estimated by gel-fitration was 280 kDa. SDS-polyacrylamide gel electrophoresis revealed three protein bands corresponding to M r 63 900, 41 700 and 30 400 Da. The methyl-coenzyme M reductase constitutes up to 10% of the soluble cell protein. The enzyme has K m apparent values of 23 μM and 2 mM for N -7-mercaptoheptanoylthreonine phosphate (HS- HTP = component B ) and methyl-coenzyme M (CH3CoM) respectively. At the optimum pH of 7.0 60 nmol of methane were formed per min per mg protein.  相似文献   

10.
Bradyrhizobium japonicum strain 110spc4 was capable of chemolithoautotrophic growth with carbon monoxide (CO) as a sole energy and carbon source under aerobic conditions. The enzyme carbon monoxide dehydrogenase (CODH; EC 1.2.99.2) has been purified 21-fold, with a yield of 16% and a specific activity of 58 nmol of CO oxidized/min/mg of protein, by a procedure that involved differential ultracentrifugation, anion-exchange chromatography, hydrophobic interaction chromatography, and gel filtration. The purified enzyme gave a single protein and activity band on nondenaturing polyacrylamide gel electrophoresis and had a molecular mass of 230,000 Da. The 230-kDa enzyme was composed of large (L; 75-kDa), medium (M; 28.4-kDa), and small (S; 17.2-kDa) subunits occurring in heterohexameric (LMS)(2) subunit composition. The 75-kDa polypeptide exhibited immunological cross-reactivity with the large subunit of the CODH of Oligotropha carboxidovorans. The B. japonicum enzyme contained, per mole, 2.29 atoms of Mo, 7.96 atoms of Fe, 7.60 atoms of labile S, and 1.99 mol of flavin. Treatment of the enzyme with iodoacetamide yielded di(carboxamidomethyl)molybdopterin cytosine dinucleotide, identifying molybdopterin cytosine dinucleotide as the organic portion of the B. japonicum CODH molybdenum cofactor. The absorption spectrum of the purified enzyme was characteristic of a molybdenum-containing iron-sulfur flavoprotein.  相似文献   

11.
CO dehydrogenase (CO-DH) catalyzes the oxidation of CO to CO(2) in carboxydobacteria. Cell-free extracts prepared from several mycobacteria, including Mycobacterium tuberculosis H37Ra, showed NO dehydrogenase (NO-DH) activity in a reaction mixture containing sodium nitroprusside (SNP) as the source of NO. The association of the NO-DH activity with CO-DH was revealed by activity staining and confirmed by enzyme assay with purified CO-DH from Mycobacterium sp. strain JC1, a carboxydotrophic mycobacterium. SNP stimulated the production of CO-DH with a coincidental increase in NO-DH activity in the bacterium, further supporting this association and implying the existence of a possible SNP-induced CO-DH gene expression. The addition of purified CO-DH to cultures of Escherichia coli revealed that the enzyme protected E. coli from SNP-induced killing in a dose-dependant way. The present results indicate that mycobacterial CO-DH also acts as a NO-DH, which may function in the protection of mycobacterial pathogens from nitrosative stress during infection.  相似文献   

12.
Methanobacterium thermoautotrophicum growing on H2 plus CO2 as sole carbon and energy source was found to contain acetate thiokinase (Acetyl CoA synthetase; EC 6.2.1.1): Acetate+ATP+CoA Acetyl CoA+AMP+PPi. The apparent K m value for acetate was 40 M. Acetate kinase (EC 2.7.2.1) and phosphotransacetylase (EC 2.3.1.8) could not be detected. The specific activity of acetate thiokinase was high in cells grown with limited H2 and CO2 supply (approximately 100nmol/min · mg protein), it was low in exponentially grown cells (2 nmol/min·mg protein). This corresponded with the finding that cells growing linearly in the presence of acetate assimilated the monocarboxylic acid in high amounts (>10% of the cell carbon was derived from acetate), whereas exponentially growing cells did not (<1% of cell carbon was derived from acetate). These latter observations indicated that acetate thiokinase and free acetate are not involved in autotrophic CO2 fixation in M. thermoautotrophicum. The presence and some kinetic properties of succinate thiokinase (EC 6.2.1.5), adenylate kinase (EC 2.7.4.3), and inorganic pyrophosphatase (EC 3.6.1.1.) are also described.  相似文献   

13.
Distribution of cytochromes in methanogenic bacteria   总被引:2,自引:0,他引:2  
Abstract Various methanogenic bacteria belonging to the orders Methanobacteriales, Methanococcales , and Methanomicrobiales were examined for the presence of cytochromes. Those methanogens which are capable of growing only on H 2+ CO 2 or formate were found to lack cytochromes. However, membrane-bound cytochromes were detected in species able to utilize methanol, methylamines or acetate.  相似文献   

14.
An enrichment culture which converted acetate to methane at 60°C was obtained from a thermophilic anaerobic bioreactor. The predominant morphotype in the enrichment was a sheathed gas-vacuolated rod with marked resemblence to the mesophile Methanothrix soehngenii. This organism was isolated using vancomycin treatments and serial dilutions and was named Methanothrix sp. strain CALS-1. Strain CALS-1 grew as filaments typically 2–5 cells long, and cultures showed opalescent turbidity rather than macroscopic clumps. The cells were enclosed in a striated subunit-type sheath and there were distinct cross-walls between the cells, similar to M. soehngenii. The gas vesicles in cells were typically 70 nm in diameter and up to 0.5 m long, and were collapsed by pressures over 3 atm (ca. 300 kPa). Stationary-phase cells tended to have a higher vesicle content than did growing cells, and occasionally bands of cells were seen floating at the top of the liquid in stationary-phase cultures. Acetate was the only substrate of those tested which was used for methanogenesis by strain CALS-1, and acetate was decarboxylated by the aceticlastic reaction. The optimum temperature for growth of strain CALS-1 was near 60°C (doubling time=24–26 h), with no growth occurring at 70°C and 37°C. The optimum pH value for growth was near 6.5 in bicarbonate/CO2 buffered medium and no growth occurred at pH 5.5 or pH 8.4. No growth was obtained below pH 7 when the medium was buffered with 20 mM phosphate. Strain CALS-1 grew in a chemically defined medium and required biotin. Sulfide concentrations over 1 mM were inhibitory to the culture, and growth was more rapid with 1 mM 2-mercaptoethane sulfonate (coenzyme M) or 1 mM titanium citrate as an accessory reductant than with 1 mM cysteine. It is likely that strain CALS-1 represents a new species in the genus Methanothrix.  相似文献   

15.
The activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase were tested in cell extracts of 10 different methanogenic bacteria grown on H2/CO2 or on other methanogenic substrates. The four activities were found in all the organisms investigated: Methanobacterium thermoautotrophicum,M. wolfei, Methanobrevibacter arboriphilus, Methanosphaera stadtmanae, Methanosarcina barkeri (strains Fusaro and MS), Methanothrix soehngenii, Methanospirillum hungatei, Methanogenium organophilum, and Methanococcus voltae. Cell extracts of H2/CO2 grown M. barkeri and of methanol grown M. barkeri showed the same specific activities suggesting that the four enzymes are of equal importance in CO2 reduction to methane and in methanol disproportionation to CO2 and CH4. In contrast, cell extracts of acetate grown M. barkeri exhibited much lower activities of formylmethanofuran dehydrogenase and methylenetetrahydromethanopterin dehydrogenase suggesting that these two enzymes are not involved in methanogenesis from acetate. In M. stadtmanae, which grows on H2 and methanol, only heterodisulfide reductase was detected in activities sufficient to account for the in vivo methane formation rate. This finding is consistent with the view that the three other oxidoreductases are not required for methanol reduction to methane with H2.  相似文献   

16.
Abstract During adaptation of Acinetobacter calcoaceticus to growth on acetate the specific activity of NADP-isocitrate dehydrogenase increased. This response is unique, as in other bacteria grown under the same conditions the activity of the enzyme decreases as a result of covalent phosphorylation. Moreover, A. calcoaceticus is also unusual in containing two distinct isoenzymes of NADP-isocitrate dehydrogenase. It has here been shown that the adaptation of A. calcoaceticus to acetate is accompanied by an increase in the relative proportion of the larger, allosteric, isoenzyme with a concomitant decrease in the level of the smaller, non-allosteric, isoenzyme.  相似文献   

17.
Y S Do  E Kim    Y M Kim 《Journal of bacteriology》1990,172(3):1267-1270
Extracts of heterotrophically grown cells of Pseudomonas carboxydovorans were found to contain an inhibitor of carbon monoxide dehydrogenase (CO-DH). The inhibitor activity was not detected in CO-autotrophically grown cells. The inhibitor was extremely stable to heat treatment based on the extent of inhibition of CO-DH activity. The extent of inhibition was proportional to the amount of cell extract added to the reaction mixture. The inhibition was independent of a prior incubation period of the extracts with CO-DH. The inhibitor was precipitable with ammonium sulfate, phenol, and trichloroacetic acid. It was passed through benzoylated dialysis tubing and Amicon ultrafiltration membrane YM2. Denaturing and nondenturing polyacrylamide gel electrophoresis of CO-DH inactivated by inhibitor revealed that the mobilities of native enzyme and subunits were identical to those of active CO-DH. The inhibitor-treated CO-DH retained its original antigenic sites and exhibited enzyme activity upon activity staining. The CO-DH inhibitor of P. carboxydovorans was also active on CO-DHs from Pseudomonas carboxydohydrogena, Acinetobacter sp. strain JC1, and Pseudomonas carboxydoflava.  相似文献   

18.
Cell suspensions of Methanosarcina barkeri (strain Fusaro) grown on acetate were found to catalyze the formation of methane and CO2 from acetate (30–40 nmol/min·mg protein) and an isotopic exchange between the carboxyl group of acetate and 14CO2 (30–40 nmol/min·mg protein). An isotopic exchange between [14C]-formate and acetate was not observed. Cells grown on methanol mediated neither methane formation from acetate nor the exchange reactions. The data indicate that the isotopic exchange between CO2 and the carboxyl group of acetate is a partial reaction of methanogenesis from acetate. Both reactions were completely inhibited by low concentrations of cyanide (20 M) or of hydrogen (0.5% in the gas phase). Methane formation from acetate was also completely inhibited by low concentrations of carbon monoxide (0.2% in the gas phase) whereas only significantly higher concentrations of CO had an effect on the exchange reaction. In the concentration range tested KCN, H2 and CO had no effect on methane formation from methanol or from H2 and CO2; however, cyanide (20 M) also affected methane formation from CO. The results are discussed with respect to proposed mechanisms of methane and CO2 formation from acetate.  相似文献   

19.
Archaeoglobus lithotrophicus is a hyperthermophilic Archaeon that grows on H2 and sulfate as energy sources and CO2 as sole carbon source. The autotrophic sulfate reducer was shown to contain all the enzyme activities and coenzymes of the reductive carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation as operative in methanogenic Archaea. With the exception of carbon monoxide dehydrogenase these enzymes and coenzymes were also found in A. profundus. This organism grows lithotrophically on H2 and sulfate, but differs from A. lithotrophicus in that it cannot grow autotrophically: A. profundus requires acetate and CO2 for biosynthesis. The absence of carbon monoxide dehydrogenase in A. profundus is substantiated by the observation that this organism, in contrast to A. lithotrophicus, is not mini-methanogenic and contains only relatively low concentrations of corrinoids.Abbreviations F 420 coenzyme F420 - MFR methanofuran - CHO-MFR formylmethanofuran - H 4MPT 5,6,7,8-tetrahydromethanopterin - CHO–H 4MPT N5 formyl-H4MPT - CHH4MPT+N5 methenyl-H4MPT - CH 2=H4MPT N5, N10 methylene-H4MPT - CH 3–H4MPT N5 methyl-H4MPT - H 4F tetrahydrofolate - I U 1 mol/min - t d doubling time  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号