首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sialyl-Tn is a carbohydrate antigen overexpressed in several epithelial cancers, including breast cancer, and usually associated with poor prognosis. Sialyl-Tn is synthesized by a CMP-Neu5Ac:GalNAcalpha2,6-sialyltransferase: CMP-Neu5Ac: R-GalNAcalpha1-O-Ser/Thr alpha2,6-sialyltransferase (EC 2.4.99.3) (ST6GalNAc I), which transfers a sialic acid residue in alpha2,6-linkage to the GalNAcalpha1-O-Ser/Thr structure. However, established breast cancer cell lines express neither ST6GalNAc I nor sialyl-Tn. We have previously shown that stable transfection of MDA-MB-231, a human breast cancer cell line, with ST6GalNAc I cDNA induces sialyl-Tn antigen (STn) expression. We report here the modifications of the O-glycosylation pattern of a MUC1-related recombinant protein secreted by MDA-MB-231 sialyl-Tn positive cells. We also show that sialyl-Tn expression and concomitant changes in the overall O-glycan profiles induce a decrease of adhesion and an increase of migration of MDA-MB-231. Moreover, STn positive clones exhibit an increased tumour growth in severe combined immunodeficiency (SCID) mice. These observations suggest that modification of the O-glycosylation pattern induced by ST6GalNAc I expression are sufficient to enhance the tumourigenicity of MDA-MB-231 breast cancer cells.  相似文献   

2.
Auto-antibodies induced by cancer represent promising sensitive biomarkers and probes to identify immunotherapeutic targets without immunological tolerance. Surprisingly few epitopes for such auto-antibodies have been identified to date. Recently, a cancer-specific syngeneic murine monoclonal antibody 237, developed to a spontaneous murine fibrosarcoma, was shown to be directed to murine podoplanin (OTS8) with truncated Tn O-glycans. Our understanding of such cancer-specific auto-antibodies to truncated glycoforms of glycoproteins is limited. Here we have investigated immunogenicity of a chemoenzymatically produced Tn-glycopeptide derived from the putative murine podoplanin O-glycopeptide epitope. We found that the Tn O-glycopeptide was highly immunogenic in mice and produced a Tn-glycoform specific response with no reactivity against unglycosylated peptides or the O-glycopeptide with extended O-glycan (STn and T glycoforms). The immunodominant epitope was strictly dependent on the peptide sequence, required Tn at a specific single Thr residue (Thr77), and antibodies to the epitope were not found in naive mice. We further tested a Tn O-glycopeptide library derived from human podoplanin by microarray analysis and demonstrated that the epitope was not conserved in man. We also tested human cancer sera for potential auto-antibodies to similar epitopes, but did not detect such antibodies to the Tn-library of podoplanin. The reagents and methods developed will be valuable for further studies of the nature and timing of induction of auto-antibodies to distinct O-glycopeptide epitopes induced by cancer. The results demonstrate that truncated O-glycopeptides constitute highly distinct antibody epitopes with great potential as targets for biomarkers and immunotherapeutics.  相似文献   

3.
The MUC1 mucin represents a prime target antigen for cancer immunotherapy because it is abundantly expressed and aberrantly glycosylated in carcinomas. Attempts to generate strong humoral immunity to MUC1 by immunization with peptides have generally failed partly because of tolerance. In this study, we have developed chemoenzymatic synthesis of extended MUC1 TR glycopeptides with cancer-associated O-glycosylation using a panel of recombinant human glycosyltransferases. MUC1 glycopeptides with different densities of Tn and STn glycoforms conjugated to KLH were used as immunogens to evaluate an optimal vaccine design. Glycopeptides with complete O-glycan occupancy (five sites per repeat) elicited the strongest antibody response reacting with MUC1 expressed in breast cancer cell lines in both Balb/c and MUC1.Tg mice. The elicited humoral immune response showed remarkable specificity for cancer cells suggesting that the glycopeptide design holds promise as a cancer vaccine. The elicited immune responses were directed to combined glycopeptide epitopes, and both peptide sequence and carbohydrate structures were important for the antigen. A MAb (5E5) with similar specificity as the elicited immune response was generated and shown to have the same remarkable cancer specificity. This antibody may hold promise in diagnostic and immunopreventive measures.  相似文献   

4.
Glycosylation determines essential biological functions of epithelial mucins in health and disease. We report on the influence of glycosylation of the immunodominant DTR motif of MUC1 on its antigenicity. Sets of novel glycopeptides were synthesized that enabled us to examine sole and combined effects of peptide length (number of repeats) and O-glycosylation with GalNAc at the DTR motif on the binding patterns of 22 monoclonal antibodies recognizing this motif. In case of unglycosylated peptides almost all antibodies bound better to multiple MUC1 tandem repeats. Glycosylation at the DTR led to enhanced binding in 11 cases, whereas 10 antibodies were not influenced in binding, and one was inhibited. In nine of the former cases both length and DTR glycosylation were additive in their influence on antibody binding, suggesting that both effects are different. Improved binding to the glycosylated DTR motif was exclusively found with antibodies generated against tumor-derived MUC1. Based on these data a tumor-specific MUC1 epitope is defined comprising the ...PDTRP... sequence in a particular conformation essentially determined by O-glycosylation at its threonine with either GalNAcalpha1 or a related short glycan. The results can find application in the field of MUC1-based immunotherapy.  相似文献   

5.
Mucin glycoproteins are major secreted or membrane-bound molecules that, in cancer, show modifications in both the mucin proteins expression and in the O-glycosylation profile, generating some of the most relevant tumour markers in clinical use for decades. Thus far, the identification of these biomarkers has been based on the detection of either the protein or the O-glycan modifications. We therefore aimed to identify the combined mucin and O-glycan features, that is, specific glycoforms, in an attempt to increase specificity of these cancer biomarkers. Using in situ proximity ligation assays (PLA) based on existing monoclonal antibodies directed to MUC1, MUC2, MUC5AC and MUC6 mucins and to cancer-associated carbohydrate antigens Tn, Sialyl-Tn (STn), T, Sialyl-Le(a) (SLe(a)) and Sialyl-Le(x) (SLe(x)) we screened a series of 28 mucinous adenocarcinomas from different locations (stomach, ampulla of Vater, colon, lung, breast and ovary) to detect specific mucin glycoforms. We detected Tn/STn/SLe(a)/SLe(x)-MUC1 and STn/SLe(a)/SLe(x)-MUC2 glycoforms in ≥50% of the cases, with a variable distribution among organs. Some new glycoforms-T/SLe(a)-MUC2, STn/T/SLe(a) SLe(x)-MUC5AC and STn/T/SLe(a)/SLe(x)-MUC6-were identified for the first time in the present study in a variable percentage of cases from different organs. In conclusion, application of the PLA technique allowed sensitive detection of specific aberrant mucin glycoforms in cancer, increasing specificity to the use of antibodies either to the mucin protein backbone or to the O-glycan haptens alone.  相似文献   

6.
Aberrant glycosylation occurs in the majority of human cancers and changes in mucin-type O-glycosylation are key events that play a role in the induction of invasion and metastases. These changes generate novel cancer-specific glyco-antigens that can interact with cells of the immune system through carbohydrate binding lectins. Two glyco-epitopes that are found expressed by many carcinomas are Tn (GalNAc-Ser/Thr) and STn (NeuAcα2,6GalNAc-Ser/Thr). These glycans can be carried on many mucin-type glycoproteins including MUC1. We show that the majority of breast cancers carry Tn within the same cell and in close proximity to extended glycan T (Galβ1,3GalNAc) the addition of Gal to the GalNAc being catalysed by the T synthase. The presence of active T synthase suggests that loss of the private chaperone for T synthase, COSMC, does not explain the expression of Tn and STn in breast cancer cells. We show that MUC1 carrying both Tn or STn can bind to the C-type lectin MGL and using atomic force microscopy show that they bind to MGL with a similar deadadhesion force. Tumour associated STn is associated with poor prognosis and resistance to chemotherapy in breast carcinomas, inhibition of DC maturation, DC apoptosis and inhibition of NK activity. As engagement of MGL in the absence of TLR triggering may lead to anergy, the binding of MUC1-STn to MGL may be in part responsible for some of the characteristics of STn expressing tumours.  相似文献   

7.
STn (NeuAc26GalNAc-O-Ser/Thr) is a carbohydrate epitope overexpressed in various human carcinomas. Clinical trials are underway using synthetic STn or STn trimeric glycopeptides [STn, cluster; STn(c) conjugated with keyhole limpet hemocyanin (KLH) as active specific immunotherapy for these cancers. These vaccines have been prepared by conjugating a crotyl ethyl amide derivative of STn or STn(c) to KLH by direct reductive amination after ozonolysis. In the case of STn(c) the conjugation efficiency and the resulting epitope ratios were low. This may be due to steric hinderance of the short spacer arm. To overcome these difficulties, without resynthesis, the STn(c) glycopeptide was modified by attachment of an MMCCH (4-(4-N-maleimidomethyl) cyclohexane-1-carboxyl hydrazide) spacer arm to the aldehyde derivative, and then conjugated with thiolated KLH. This method gave a higher epitope ratio and yield than the direct method. The STn(c)-MMCCH-KLH conjugate induced high titer antibodies in mice against STn(c). This method may be generally applicable for large synthetic oligosaccharides.  相似文献   

8.
Altered expression of mucin gene products has been described in many epithelial cancers including colorectal cancer. However, mucins are heavily O-glycosylated making the study of apomucin expression difficult. In this study, we describe a novel method of chemical deglycosylation of mucin gene products on paraffin embedded formalin-fixed tissue sections. In the normal and cancerous colorectum, our results suggest that alkali-catalyzed -elimination of periodate oxidized glycan method of chemical deglycosylation modifies the structure of carbohydrates sensitive to mild periodate oxidation resulting in less steric hindrance and selectively removes Tn and sialyl-Tn structures, partially exposing the underlying apomucin epitopes. Using this method, we have demonstrated that the MUC1 tandem repeat epitope recognized by MAb 139H2 is masked predominantly due to steric hindrance by carbohydrate structures whereas the MUC2 tandem repeat epitope recognized by MAb CCP58 and pAb MRP and the MUC3 tandem repeat epitope recognized by pAb M3P are masked by the presence of carbohydrate side chains O-linked to Ser/Thr residues within the epitope. Considerable differences in the level and pattern of expression of the epitopes in the tandem repeat region of apomucins of MUC1, MUC2, and MUC3 were observed between normal and cancerous colorectal cancer tissues. We conclude that this novel chemical deglycosylation method that causes selective cleavage of distinct glycans will be useful in unmasking various mucin gene products and glycoproteins containing similar O-glycosidic linkages in the tissue sections of formalin-fixed paraffin embedded normal and pathological tissues.  相似文献   

9.
Wu AM 《FEBS letters》2004,562(1-3):51-58
Vicia villosa B(4) (VVL-B(4)) is an important lectin for detecting exposed Tn (GalNAcalpha1-Ser/Thr) determinants on cancer cells. In order to elucidate the binding factors involved in VVL-B(4) and glycotope interaction, the binding properties of this lectin were analyzed by enzyme-linked lectinosorbent and inhibition assays. From the results, it is concluded that the most critical factor affecting VVL-B(4) binding is polyvalency at the alpha anomer of Gal with -NH CH(3)CO at carbon-2 (Tn epitope), which enhances the reactivity by 3.3x10(5) times over monovalent Gal. The reactivities of glycotopes can be ranked as follows: high density Tn cluster >Tn glycopeptides (MW<3.0x10(3) > monomeric Tn to tri- Tn glycopeptides > other GalNAcalpha/beta-related structural units>Gal and Galalpha- or beta-linked ligands, demonstrating the essential role of the polyvalency of Tn glycotopes in the enhancement of the binding.  相似文献   

10.
We present evidence that site-specific O-glycosylation by recombinant polypeptide N-acetylgalactosaminyltransferases rGalNAc-T2 and -T4 is controlled by the primary sequence context, as well as by the position and structure of previously introduced O-glycans. Synthetic mucin-type (glyco)peptides corresponding to sections of the tandem repeat regions of MUC1, MUC2, and MUC4 were used as substrates for recombinant polypeptide N-acetylgalactosaminyltransferases, rGalNAc-T2 and -T4. By concerted and sequential action the two transferases are able to fully glycosylate MUC1 but only partially MUC2 and MUC4 tandem repeat peptides. GalNAc residues on MUC1 acceptor peptides trigger activity of rGalNAc-T4 directed to Ser in VTSA and Thr in PDTR and of rGalNAc-T2 to Ser/Thr within the GSTA motif of variant MUC1 peptides. However, elongation of GalNAc by beta3-galactosylation inhibits rGalNAc-T4 activity completely and rGalNAc-T2 activity with respect to the acceptor site GSTA. These findings are in accord with the inhibition of rGalNAc-T2 and -T4 by fully GalNAc-substituted MUC1 repeat peptide and support a glycosylation-dependent activity induction or enhancement of both enzymes.  相似文献   

11.
MUC1 mucin is a large transmembrane glycoprotein, of which the extracellular domain is formed by a repeating 20 amino acid sequence, GVTSAPDTRPAPGSTAPPAH. In normal breast epithelial cells, the extracellular domain is densely covered with highly branched complex carbohydrate structures. However, in neoplastic breast tissue, the extracellular domain is underglycosylated, resulting in the exposure of a highly immunogenic core peptide epitope (PDTRP in bold above) as well as the normally cryptic core Tn (GalNAc), STn (sialyl alpha2-6 GalNAc), and TF (Gal beta1-3 GalNAc) carbohydrates. In the present study, NMR methods were used to correlate the effects of cryptic glycosylation outside of the PDTRP core epitope region to the recognition and binding of a monoclonal antibody, Mab B27.29, raised against the intact tumor-associated MUC1 mucin. Four peptides were studied: a MUC1 16mer peptide of the sequence Gly1-Val2-Thr3-Ser4-Ala5-Pro6-Asp7-Thr8-Arg9-Pro10-Ala11-Pro12-Gly13-Ser14-Thr15-Ala16, two singly Tn-glycosylated versions of this peptide at either Thr3 or Ser4, and a doubly Tn-glycosylated version at both Thr3 and Ser4. The results of these studies showed that the B27.29 MUC1 B-cell epitope maps to two separate parts of the glycopeptide, the core peptide epitope spanning the PDTRP sequence and a second (carbohydrate) epitope comprised of the Tn moieties attached at Thr3 and Ser4. The implications of these results are discussed within the framework of developing a glycosylated second-generation MUC1 glycopeptide vaccine.  相似文献   

12.
Isothermal titration microcalorimetry (ITC) and hemagglutination inhibition measurements demonstrate that a chemically and enzymatically prepared form of porcine submaxillary mucin that possesses a molecular mass of approximately 10(6) daltons and approximately 2300 alpha-GalNAc residues (Tn-PSM) binds to the soybean agglutinin (SBA) with a K(d) of 0.2 nm, which is approximately 10(6)-fold enhanced affinity relative to GalNAcalpha1-O-Ser (Tn), the pancarcinoma carbohydrate antigen. The enzymatically derived 81 amino acid tandem repeat domain of Tn-PSM containing approximately 23 alpha-GalNAc residues binds with approximately 10(3)-fold enhanced affinity, while the enzymatically derived 38/40 amino acid cleavage product(s) of Tn-PSM containing approximately 11-12 alpha-GalNAc residues shows approximately 10(2)-fold enhanced affinity. A natural carbohydrate decorated form of PSM (Fd-PSM) containing 40% of the core 1 blood group type A tetrasaccharide, and 58% peptide-linked GalNAcalpha1-O-Ser/Thr residues, with 45% of the peptide-linked alpha-GalNAc residues linked alpha-(2,6) to N-glycolylneuraminic acid, shows approximately 10(4) enhanced affinity for SBA. Vatairea macrocarpa lectin (VML), which is also a GalNAc binding lectin, displays a similar pattern of binding to the four forms of PSM, although there are quantitative differences in its affinities as compared with SBA. The higher affinities of SBA and VML for Tn-PSM relative to Fd-PSM indicate the importance of carbohydrate composition and epitope density of mucins on their affinities for lectins. The higher affinities of SBA and VML for Tn-PSM relative to its two shorter chain analogs demonstrate that the length of a mucin polypeptide and hence total carbohydrate valence determines the affinities of the three Tn-PSM analogs. The results suggest a binding model in which lectin molecules "bind and jump" from alpha-GalNAc residue to alpha-GalNAc residue along the polypeptide chain of Tn-PSM before dissociating. The complete thermodynamic binding parameters for these mucins including their binding stoichiometries are presented. The results have important implications for the biological activities of mucins including those expressing the Tn cancer antigen.  相似文献   

13.
MUC1 mucin is a large transmembrane glycoprotein, the extracellular domain of which is formed by a repeating 20 amino acid sequence, GVTSAPDTRPAPGSTAPPAH. In normal breast epithelial cells, the extracellular domain is densely covered with highly branched complex carbohydrate structures. However, in neoplastic breast tissue, the extracellular domain is under-glycosylated, resulting in the exposure of a highly immunogenic core peptide epitope (PDTRP in bold above), as well as in the exposure of normally cryptic core Tn (GalNAc), STn (sialyl alpha2-6 GalNAc) and TF (Gal beta1-3 GalNAc) carbohydrates. Here, we report the results of 1H NMR structural studies, natural abundance 13C NMR relaxation measurements and distance-restrained MD simulations designed to probe the structural and dynamical effects of Tn-glycosylation within the PDTRP core peptide epitope. Two synthetic peptides were studied: a nine-residue MUC1 peptide of the sequence, Thr1-Ser2-Ala3-Pro4-Asp5-Thr6-Arg7-Pro8-Ala9, and a Tn-glycosylated version of this peptide, Thr1-Ser2-Ala3-Pro4-Asp5-Thr6(alphaGalNAc)-Arg7-Pro8-Ala9. The results of these studies show that a type I beta-turn conformation is adopted by residues PDTR within the PDTRP region of the unglycosylated MUC1 sequence. The existence of a similar beta-turn within the PDTRP core peptide epitope of the under-glycosylated cancer-associated MUC1 mucin protein might explain the immunodominance of this region in vivo, as the presence of defined secondary structure within peptide epitope regions has been correlated with increased immunogenicity in other systems. Our results have also shown that Tn glycosylation at the central threonine within the PDTRP core epitope region shifts the conformational equilibrium away from the type I beta-turn conformation and toward a more rigid and extended state. The significance of these results are discussed in relation to the possible roles that peptide epitope secondary structure and glycosylation state may play in MUC1 tumor immunogenicity.  相似文献   

14.
Jacalin, a lectin from the jackfruit Artocarpus integrifolia, has been known as a valuable tool for specific capturing of O-glycoproteins such as mucins and IgA1. Though its sugar-binding preference for T/Tn-antigens is well established, its detailed specificity has not been elucidated. In this study, we prepared a series of mucin-type glycopeptides using human glycosyltransferases, that is, ST6GalNAc1, Core1Gal-T1 and -T2, beta3Gn-T6, and Core2GnT1, and investigated their binding to immobilized Jacalin by frontal affinity chromatography (FAC). As a result, consistent with the previous observation, Jacalin showed high affinity for T-antigen (Core1) and Tn-antigen (alpha N-acetylgalactosamine)-attached peptides. Furthermore, we here show as novel findings that (1) Jacalin also showed significant affinity for Core3 and sialyl-T (ST)-attached peptides, but (2) Jacalin could not bind to Core2, Core6, and sialyl-Tn (STn)-attached peptides. The results were also confirmed by FAC using p-nitrophenyl (pNP)-derivatized saccharides. In conclusion, Jacalin binds to a GalNAcalpha1-peptide, in which C6-OH of alphaGalNAc is free (i.e., Core1, Tn, Core3, and ST), whereas it cannot recognize a GalNAcalpha1-peptide with a substitution at the C6 position (i.e., Core2, Core6, and STn). These findings provide useful information when applying jacalin for functional analysis of mucin-type glycoproteins and glycopeptides.  相似文献   

15.
Salivary mucins, encoded by the MUC5B gene, make up a heterogeneous family of molecules, which are secreted by several glands, including the submandibular, sublingual, and palatine glands. Previous studies have shown that heterogeneity in the salivary mucin population is related to its multiglandular origin. In the present study we address the question to what extent the mucin (MUC5B) population from a single human salivary gland is made up of different glycoforms. Using monoclonal antibodies to defined protein and sulfated carbohydrate epitopes specific to MUC5B, we conduct an immunohistochemical study of different salivary gland types, including submandibular, sublingual, and labial glands. In all tissues studied we found a mosaic expression pattern of sulfo-Lewis a antigen, recognized by mAb F2, which in salivary glands is exclusively present on MUC5B. On the other hand, mucous acini were uniformly labeled by mAb EU-MUC5Bb, evoked against a peptide-stretch of the tandem repeat region of MUC5B. Double staining with both antibodies confirmed the presence of MUC5B-positive/sulfo-Lewis a-positive cells, as well as MUC5B-positive/sulfo-Lewis a-negative cells within one glandular unit. These results indicate that one and the same salivary gland synthesizes different MUC5B glycoforms.  相似文献   

16.
MUC1 is a membrane glycoprotein, which in adenocarninomas is overexpressed and exhibits truncated O‐glycosylation. Overexpression and altered glycosylation make MUC1 into a candidate for immunotherapy. Monoclonal antibodies directed against MUC1 frequently bind an immunodominant epitope that contains a single site for O‐glycosylation. Glycosylation with tumor carbohydrate antigens such as the Tn‐antigen (GalNAc‐O‐Ser/Thr) results in antibodies binding with higher affinity. One proposed model to explain the enhanced affinity of antibodies for the glycosylated antigen is that the addition of a carbohydrate alters the conformational properties, favoring a binding‐competent state. The conformational effects associated with Tn glycosylation of the MUC1 antigen was investigated using solution‐state NMR and molecular dynamics. NMR experiments revealed distinct substructures of the glycosylated MUC1 peptides compared with the unglycosylated peptide. Molecular dynamics simulations of the MUC1 glycopeptide and peptide revealed distinguishing differences in their conformational preferences. Furthermore, the glycopeptide displayed a smaller conformational sampling compared with the peptide, suggesting that the glycopeptide sampled a narrower conformational space and is less dynamic. A comparison of the computed ensemble of conformations assuming random distribution, NMR models, and molecular dynamics simulations indicated that the MUC1 glycopeptide and aglycosylated peptide sampled structurally distinctly ensembles and that these ensembles were different from that of the random coil. Together, these data support the hypothesis that that conformational pre‐selection could be an essential feature of these peptides that dictates the binding affinities to MUC1 specific antibodies.  相似文献   

17.
Mucin-type glycosylation [α-N-acetyl-D-galactosamine (α-GalNAc)-O-Ser/Thr] on proteins is initiated biosynthetically by 16 homologous isoforms of GalNAc-Ts (uridine diphosphate-GalNAc:polypeptide N-acetylgalactosaminyltransferases). All the GalNAc-Ts consist of a catalytic domain and a lectin domain. Previous reports of GalNAc-T assays toward peptides and α-GalNAc glycopeptides showed that the lectin domain recognized the sugar on the substrates and affected the reaction; however, the details are not clear. Here, we report a new strategy to give insight on the sugar recognition ability and the function of the GalNAc-T3 lectin domain using chemically synthesized natural-type (α-GalNAc-O-Thr) and unnatural-type [β-GalNAc-O-Thr, α-Fuc-O-Thr and β-GlcNAc-O-Thr] MUC5AC glycopeptides. GalNAc-T3 is one of isoforms expressed in various organs, its substrate specificity extensively characterized and its anomalous expression has been identified in several types of cancer (e.g. pancreas and stomach). The glycopeptides used in this study were designed based on a preliminary peptide assay with a sequence derived from the MUC5AC tandem repeat. Through GalNAc-T3 and lectin-inactivated GalNAc-T3, competition assays between the glycopeptide substrates and product analyses (MALDI-TOF MS, RP-HPLC and ETD-MS/MS), we show that the lectin domain strictly recognized GalNAc on the substrate and this specificity controlled the glycosylation pathway.  相似文献   

18.
In cancer, mucins are aberrantly O-glycosylated, and consequently, they express tumor-associated antigens such as the Tn determinant (alpha-GalNAc-O-Ser/Thr). As compared with normal tissues, they also exhibit a different pattern of expression. In particular, MUC6, which is normally expressed only in gastric tissues, has been detected in intestinal, pulmonary, colorectal, and breast carcinomas. Recently, we have shown that the MCF7 breast cancer cell line expresses MUC6-Tn glycoproteins in vivo. Cancer-associated mucins show antigenic differences from normal mucins, and as such, they may be used as potential targets for immunotherapy. To develop anticancer vaccines based on the Tn antigen, we prepared several MUC6-Tn glycoconjugates. To this end, we performed the GalNAc enzymatic transfer to two recombinant MUC6 proteins expressed in Escherichia coli, using UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts), which catalyze in vivo the Tn antigen synthesis. We used either a mixture of ppGalNAc-Ts from MCF7 breast cancer cell extracts or a recombinant ppGalNAc-T1. In both cases, we achieved the synthesis of MUC6-Tn glycoconjugates at a semi-preparative scale (mg amounts). These glycoproteins displayed a high level of Tn antigens, although the overall density depends on both enzyme source and protein acceptor. These MUC6-Tn glycoconjugates were recognized by two anti-Tn monoclonal antibodies that are specific to human cancer cells. Moreover, the MUC6-Tn glycoconjugate glycosylated using MCF7 extracts as the ppGalNAc-T source was able to induce immunoglobulin G (IgG) antibodies that recognized a human tumor cell line. In conclusion, the large-scaled production of MUC6 with tumor-relevant glycoforms holds considerable promise for developing effective anticancer vaccines, and further studies of their immunological properties are warranted.  相似文献   

19.
A recombinant mucin O-glycosylation reporter protein, containing 1.7 tandem repeats (TRs) from the transmembrane mucin MUC1, was constructed. The reporter protein, MUC1(1.7TR)-IgG2a, was produced in CHO-K1 cells to study the glycosylation of the MUC1 TR and the in vivo role of polypeptide-GalNAc-T4 glycosyltransferase. N-terminal sequencing of MUC1(1.7TR)-IgG2a showed that all five potential O-glycosylation sites within the TR were used, with an average density of 4.5 glycans per repeat. The least occupied site was Thr in the PDTR motif, where 75% of the molecules were glycosylated, compared to 88-97% at the other sites. This glycan density was confirmed by an alternative liquid chromatography-mass spectrometry (LC-MS) based approach. The O-linked oligosaccharides were released from MUC1(1.7TR)-IgG2a and analyzed by nano-LC-MS and LC-MS/MS. Four oligosaccharides were present, NeuAcalpha2-3Galbeta1-3GalNAcol, NeuAcalpha2-3Galbeta1-3(NeuAcalpha2-6)GalNAcol, Galbeta1-3(NeuAcalpha2-6)GalNAcol, and Galbeta1-3GalNAcol, the two first being most abundant. Coexpression of the human polypeptide-GalNAc-T4 transferase with MUC1(1.7TR)-IgG2a increased the glycan occupancy at Thr in PDTR, Ser in VTSA, and Ser in GSTA, supporting the function of GalNAc-T4 proposed from previous in vitro studies. The expression of GalNAc-T4 with a mutation in the first lectin domain (alpha) had no glycosylation effect on PDTR and GSTA but surprisingly gave a dominant negative effect with a decreased glycosylation to around 50% at the Ser in VTSA. The results show that introduction of glycosyltransferases can specifically alter the sites for O-glycosylation in vivo.  相似文献   

20.
Circulating O-glycoproteins shed from cancer cells represent important serum biomarkers for diagnostic and prognostic purposes. We have recently shown that selective detection of cancer-associated aberrant glycoforms of circulating O-glycoprotein biomarkers can increase specificity of cancer biomarker assays. However, the current knowledge of secreted and circulating O-glycoproteins is limited. Here, we used the COSMC KO “SimpleCell” (SC) strategy to characterize the O-glycoproteome of two gastric cancer SimpleCell lines (AGS, MKN45) as well as a gastric cell line (KATO III) which naturally expresses at least partially truncated O-glycans. Overall, we identified 499 O-glycoproteins and 1236 O-glycosites in gastric cancer SimpleCells, and a total 47 O-glycoproteins and 73 O-glycosites in the KATO III cell line. We next modified the glycoproteomic strategy to apply it to pools of sera from gastric cancer and healthy individuals to identify circulating O-glycoproteins with the STn glycoform. We identified 37 O-glycoproteins in the pool of cancer sera, and only nine of these were also found in sera from healthy individuals. Two identified candidate O-glycoprotein biomarkers (CD44 and GalNAc-T5) circulating with the STn glycoform were further validated as being expressed in gastric cancer tissue. A proximity ligation assay was used to show that CD44 was expressed with the STn glycoform in gastric cancer tissues. The study provides a discovery strategy for aberrantly glycosylated O-glycoproteins and a set of O-glycoprotein candidates with biomarker potential in gastric cancer.Most broad proteomic studies for discovery of cancer biomarkers in serum have been designed to interrogate the proteome and not taking into account that cancer cells often produce aberrant glycoforms (1). Many cancer biomarkers currently used in the clinic are based on circulating O-glycoproteins that are detected in established serological assays (CA125, CA15–3, CEA, and CA19.9) (2). In addition to being overexpressed in cancer, these proteins also carry aberrant glycans, which open for the opportunity to selectively detect aberrant glycoforms. An inherent problem with most cancer biomarker assays is that they often have poor specificity because the detected glycoprotein is found in elevated levels in nonmalignant conditions (2, 3). We recently found that the specificity of the widely used CA125 biomarker assay can be increased by selectively detecting aberrant O-glycoforms of the MUC16 mucin probed in the CA125 assay (4). Thus, the truncated O-glycan STn (NeuAcα2–6GalNAcα1-O-Ser/Thr)1 (Fig. 1) was particularly suited for discrimination of MUC16 circulating in cancer patients in contrast to MUC16 circulating in benign conditions (4).Open in a separate windowFig. 1.Schematic depiction of the initial biosynthetic pathways of O-linked protein glycosylation. Overview of the O-linked protein glycosylation. O-GalNAc glycosylation is initiated by up to 20 different GalNAc-transferases. The addition of GalNAc to serines or threonines (or tyrosines) forms the Tn structure that can be sialylated by ST6GalNAc-I or further elongated to form up to four core structures. The core structures can be further elongated.One of the most characteristic phenotypes of cancer cells is the expression of truncated O-glycans, and the structures T (Galβ1–3GalNAcα1-O-Ser/Thr), STn, and Tn (GalNAcα1-O-Ser/Thr) (Fig. 1) are considered pancarcinoma antigens (2, 5). These truncated O-glycans are essentially not produced in normal and benign cells, which suggests that circulating O-glycoproteins in normal and benign conditions should have more mature O-glycans, whereas O-glycoproteins shed from cancer cells are expected to display truncated glycan structures. Cancer cells produce, secrete, and shed many different O-glycoproteins with truncated O-glycans, and provided these glycoproteins reach the circulation they may be detectable in serum. However, it is also known that nonsialylated glycoproteins are cleared from circulation through innate immune lectin receptors (6). In fact, we were previously unable to detect circulating T and Tn glycoforms of MUC1 and MUC16, while the sialylated ST (NeuAcα2–3Galβ1–3[NeuAcα2–6]±GalNAcα1-O-Ser/Thr) and STn glycoforms were readily detectable (4, 7). Furthermore, two classical serological biomarker assays, CA19–9 (8) and CA72.4 (911), are based on the detection of sialylated O-glycans, and especially the latter that detects STn shows that proteins expressing the STn glycoform circulate in serum of cancer patients. Interestingly, although CA72.4 has been used for decades, it is still largely unknown which O-glycoproteins carry STn and are detected by the CA72.4 assay (9, 10).The truncated STn O-glycan has attracted much attention because it is highly expressed in most gastric (12), colorectal (13), ovarian (14), breast (15), pancreatic (16), and bladder (17) carcinomas, whereas expression of STn on normal tissues is highly restricted (11, 18). In addition, STn expression is associated with carcinoma aggressiveness and poor prognosis (15, 19). We have recently described the presence of a few STn bearing glycoproteins in serum from individuals with gastric cancer and gastric cancer precursor lesions (20). The biosynthetic and genetic mechanisms underlying the expression of this truncated O-glycan in cancer have remained poorly understood, and a number of mechanisms have been proposed that may not be mutually exclusive. One mechanism is the altered expression of the sialyltransferase ST6GalNAc-I, which is believed to be the main STn synthase (21, 22) (Fig. 1), and in fact overexpression of this enzyme in cell lines appears to override the normal O-glycan elongation machinery and result in expression of STn (22, 23). Another mechanism may be reduced core1 elongation that leads to accumulation of Tn, which serves as substrate for ST6GalNAc-I (22). The core1 synthase C1GALT1 is dependent on a private chaperone Cosmc, and several studies have reported that somatic mutations in COSMC gene (24), or hypermethylation of COSMC gene in cancer (25) lead to increased expression of Tn and STn. We have further shown that knockout (KO) of COSMC in a number of human cancer cell lines produce cells that express different levels of Tn and STn truncated O-glycans ranging from exclusive Tn to exclusive STn (26). A third potential mechanism offered recently may be related to cancer-associated relocation of the polypeptide GalNAc-transferases (GalNAc-Ts) that initiate O-glycosylation (Fig. 1) from Golgi to ER, which appear to induce expression of the Tn truncated O-glycans, although expression of STn has not been explored yet (27).In the present study, we applied a glycoproteomics strategy to explore potential biomarker O-glycoproteins with the STn glycoform in gastric cancer. We first characterized the O-glycoproteome and including the secretome of two gastric cancer cell lines, AGS (intestinal type gastric carcinoma) and MKN45 (diffuse type gastric carcinoma), using our SimpleCell (SC) discovery platform where we identified a total of 499 O-glycoproteins (1236 O-glycosites). This strategy involves genetic engineering of cell lines to produce homogenous truncated O-glycans (Tn and/or STn) by KO of COSMC, followed by Vicia Villosa lectin (VVA) enrichment of Tn glycoproteins and/or glycopeptides for sensitive identification of O-glycoproteins and O-glycosites by mass spectrometry (26, 28) (Fig. 1). We applied the same glycoproteomics workflow to a wild type (wt) gastric cancer cell line, KATO III (diffuse type gastric carcinoma), which naturally expresses Tn and STn O-glycans in a mixture with more complex structures, and identified a significantly smaller O-glycoproteome (total of 47 O-glycoproteins) compared with SimpleCells (total of 499 O-glycoproteins). We next modified the strategy to enrich for STn O-glycoproteins in pools of serum from cancer patients and normal controls using pretreatment with neuraminidase to remove sialic acid and expose Tn for VVA capture. This approach enabled us to isolate and identify 37 O-glycoproteins (49 O-glycosites) in gastric cancer serum. Finally, we confirmed that two of the identified serum O-glycoproteins (CD44 and GalNAc-T5) were expressed in gastric cancer tumors by immunohistology, and further used proximity ligation assay (PLA) to show that STn glycoforms of CD44 was expressed in cancer tissue. This study clearly shows that cancer patients have a variety of circulating O-glycoproteins with the STn glycoform, and supports the hypothesis that these glycoproteins originate from the cancer tissue. The identified secreted and circulating aberrant O-glycoproteins serve as a discovery set for biomarkers of gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号