首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mouse podoplanin (mPDPN) is a type I transmembrane sialoglycoprotein, which is expressed on lymphatic endothelial cells, podocytes of the kidney, and type I alveolar cells of the lung. mPDPN is known as a platelet aggregation-inducing factor and possesses four platelet aggregation-stimulating (PLAG) domains: PLAG1, PLAG2, and PLAG3 in the N-terminus and PLAG4 in the middle of the mPDPN protein. mPDPN overexpression in cancers has been reportedly associated with hematogenous metastasis through interaction with the C-type lectin-like receptor 2 of platelets. We previously reported a rat anti-mPDPN monoclonal antibody clone PMab-1, which was developed by immunizing the PLAG2 and PLAG3 domains of mPDPN. PMab-1 is very useful in flow cytometry, western blot, and immunohistochemical analyses to detect both normal cells and cancers. However, the binding epitope of PMab-1 remains to be clarified. In the present study, flow cytometry, enzyme-linked immunosorbent assay, and immunohistochemical analyses were utilized to investigate the epitope of PMab-1. The results revealed that the critical epitope of PMab-1 is Asp39 and Met41 of mPDPN. These findings can be applied to the production of more functional anti-mPDPN monoclonal antibodies.  相似文献   

2.
Towards proteome-wide production of monoclonal antibody by phage display   总被引:5,自引:0,他引:5  
Sequencing of the human genome reveals that there are approximately 30,000 genes that encode an even greater number of proteins which comprise the human proteome. Characterization of gene products at the genome-wide scale requires the development of high throughput methods to generate temporo-spatial information on each and every protein in the cell under normal and pathological conditions. Monoclonal antibodies are important reagents for these studies. We have developed a method to generate human monoclonal antibodies by selecting phage antibody libraries directly on antigen blotted onto poly(vinylidene fluoride) membranes. Cellular proteins are first separated by two dimensional (2D) gel electrophoresis, Western blotted onto poly(vinylidene fluoride) membranes, and used to select phage antibody libraries. Monoclonal antibodies can be generated against individual protein spots on a 2D gel. The antibodies are functional in Western blotting, ELISA, and immunohistochemistry. Automation of this process should allow high throughput production of monoclonal phage antibodies against cellular proteins as well as proteins that are uniquely expressed under pathological conditions.  相似文献   

3.
利用抗体捕获法,经三轮淘洗,从表面展示随机肽序列的噬菌体文库中筛选到与衣原体单克隆抗体C17特异结合的噬菌体克隆,其一致序列为:(L/I)PGGS(P/W),竞争抑制实验表明含特异序列的克隆能与天然抗原竞争。据此,我们认为此序列为衣原体的B细胞抗原表位。  相似文献   

4.
Diacylglycerol kinase δ (DGKδ) is a type II DGK, which catalyzes diacylglycerol phosphorylation to produce phosphatidic acid. DGKδ is expressed in several types of tissues and organs including the stomach, testis, bone marrow, and lymph node. Here, we established an anti-human DGKδ (hDGKδ) mAb, DdMab-1 (mouse IgG2a, kappa), which is useful for Western blot analysis. We also introduced deletion or point mutations to hDGKδ, and performed western blotting to determine the binding epitope of DdMab-1. DdMab-1 reacted with the dN670 mutant, but not with the dN680 mutant, indicating that the N-terminus of the DdMab-1 epitope is mainly located between amino acids 670 and 680 of the protein. Further analysis using point mutants demonstrated that R675A, R678A, K679A, and K682A mutants were not detected, and V680A was only weakly detected by DdMab-1, indicating that Arg675, Arg678, Lys679, Val680 and Lys682 are important for binding of DdMab-1 to hDGKδ.  相似文献   

5.
Study of individual hepatitis C (HCV) proteins could help to find a molecular structure and conformation, localization of antigenic and immunogenic determinants, to reveal of protective epitopes. It is necessary for practical medicine - development of diagnostic test-systems, vaccines and therapeutics. Linear and conformation dependent epitopes of HCV proteins was localized in this work and immunogenic properties of phage displayed peptides screened on monoclonal antibodies to HCV proteins have been investigated. Eleven epitopes of four HCV proteins have been studied. Three epitopes was found as linear, two epitopes were dependent on secondary structure of proteins and one epitope was dependent on tertiary structure of NS3 protein. Aminoacid sequences of other determinants have been determined and the distinct localization of these determinants will be continued after discovering of tertiary structure of HCV proteins. It was shown, that phage mimotope 3f4 is immunogenic and could induce specific hu- moral immune response to NS5A HCV protein. The data obtained could be useful for improving of HCV diagnostic test-systems, studying of amino acid substitutions and its influence on antigenic properties of the HCV proteins. The results could help to study an immune response in patients infected with different genotypes of HCV. Phage displayed peptides mimicking the antigenic epitopes of HCV proteins could be applied to development of HCV vaccine.  相似文献   

6.
Phosphofructokinase‐1 from Saccharomyces cerevisiae is composed of two types of subunits, α and β. Subunit‐specific monoclonal antibodies were raised to elucidate structural and functional properties of both subunits. One monoclonal antibody, α‐F3, binds to an epitope either at the C‐terminal or at the N‐terminal part of the α‐polypeptide chain. By screening a heptapeptide library with this monoclonal antibody, a set of heptapeptides was selected, which contained the consensus sequences D–A–F and D–S–F. Two heptapeptides with these motifs were synthesized in order assess their capacity to inhibit the binding of antibody α‐F3 to native phosphofructokinase‐1. The peptide G–I–K–D–A–F–L inhibited the binding more strongly (IC50 = 1.5 µM) than the peptide A–P–W–H–D–S–F (IC50 = 33.3 µM). Sequence matching revealed the presence of the D–A–F motif in the polypeptide chain of phosphofructokinase‐1 at amino acid position 172–174. As a control, the nonapeptide A–P–T–S–K–D–A–F–L which corresponds to the sequence of the putative epitope was tested in the inhibition assay. In view of the high inhibitory capacity (IC50 = 0.3 µM) it was concluded that this nonapeptide represents the continuous epitope of phosphofructokinase‐1 that is recognized by antibody α‐F3. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
We have developed a method to rapidly identify the antigenic determinant for an antibody using in situ proteolysis of an immobilized antigen-antibody complex followed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF). A mouse anti-bombesin monoclonal antibody was immobilized to agarose beads and then the antigen, gastrin-releasing peptide (GRP), was allowed to bind. Direct analysis of the immobilized antigen-antibody complex by MALDI/TOF is demonstrated and allows identification of ca. 1 pmol of the bound GRP. To identify the epitope, the immobilized antigen-antibody complex was subjected to proteolysis with trypsin, chymotrypsin, thermolysin, and aminopeptidase M. Following proteolysis, the part of the antigen in contact with the antibody and protected from proteolysis was identified directly by MALDI/TOF. Subsequently, the epitope was eluted from the immobilized antibody with 0.1 M glycine buffer (pH 2.3), separated by reversed-phase HPLC, and its identity confirmed by MALDI/TOF. Using this approach, the epitope for the anti-bombesin monoclonal antibody was shown to comprise the last 7-8 residues (HWAVGHLM-NH2) of GRP.  相似文献   

8.
Mapping of protein domains having a distinct function is essential to understanding the protein's structure-function relationship. We used a bacteriophage lambda surface expression vector, lambdafoo, in order to determine the minimal carbohydrate-binding domain of human galectin-3 (Gal-3). Gal-3 cDNA was randomly digested by DNase I and cloned into the phage vector. The library generated was screened by affinity selection using lactose immobilized on agarose beads. DNA sequence analysis of a set of isolated clones defined the minimal folding domain of Gal-3 required for lactose binding, which consisted of 136 amino-acid residues. Using the phage clones isolated, we also determined relative dissociation constants in solution between lactose and the minimal domain expressed on the phage surface. This technique does not require either purified or labeled proteins, and bacteriophage lambda surface display may, therefore, be useful for protein domain mapping and in vitro studies of various macromolecular interactions.  相似文献   

9.
A consensus peptide sequence, QSYP, appears as an artifact during the mapping of monoclonal antibodies (MAbs) using a random peptide phage display library. Phage bearing this QSYP sequence were independently selected by four different laboratories screening separate MAb preparations with the same phage library. In each case, the QSYP sequence was selected in addition to a consensus sequence specific to the MAb. Phage that displayed the QSYP sequence were not bound by the MAb of interest, but rather bound to bovine IgG derived from the FBS present in the hybridoma growth media. The implications of this finding for the interpretation of phage library screening results and possible methods for the removal of bovine IgG from MAb preparations are discussed.  相似文献   

10.
Summary Utilizing phage display peptide libraries, we have identified and mapped the antigenic determinants recognized by mouse monoclonal antibodies (mAb) on two sets of immunologically important molecules, HLA class I and class II antigens. Anti-HLA class I mAb TP25.99 recognizes a conformational and a linear determinant on distinct regions of the HLA class I α3 domain. Anti-HLA class I mAb HO-4 recognizes a conformational determinant on the α2 domain of HLA-A2 and A28 allospecificities. Anti-HLA-DR1,-DR4,-DR6,-DR8,-DR9 mAb SM/549 recognizes a conformational determinant on the β chain of HLA class II antigens. These results indicate the versatility of phage display peptide libraries to characterize antigenic determinants recognized by anti-HLA mAb.  相似文献   

11.
Utilizing phage display peptide libraries, we have identified and mapped the antigenic determinants recognized by mouse monoclonal antibodies (mAb) on two sets of immunologically important molecules, HLA class I and class II antigens. Anti-HLA class I mAb TP25.99 recognizes a conformational and a linear determinant on distinct regions of the HLA class I 3 domain. Anti-HLA class I mAb HO-4 recognizes a conformational determinant on the 2 domain of HLA-A2 and A28 allospecificities. Anti-HLA-DR1, -DR4, -DR6, -DR8, -DR9 mAb SM/549 recognizes a conformational determinant on the chain of HLA class II antigens. These results indicate the versatility of phage display peptide libraries to characterize antigenic determinants recognized by anti-HLA mAb.  相似文献   

12.
Randomized peptide sequences displayed at the surface of filamentous phages are often used to select antibody ligands. The selected sequences are generally further used in the form of synthetic peptides; however, as such, their affinity for the selecting antibody is extremely variable and factors influencing this affinity have not been fully deciphered. We have used an f88.4 phage-displayed peptide library to identify ligands of mAb 11E12, an antibody reactive to human cardiac troponin I. A majority of the sequences thus selected showed a (T/A/I/L) EP(K/R/H) motif, homologous to the Y-TEPH motif identified by multiple peptide synthesis as the critical motif recognized by mAb 11E12 in the peptide epitope. A set of 15-mer synthetic peptides derived from the phage-selected sequences was used in BIACORE to characterize their interaction with mAb 11E12. Most peptides exhibited affinities in the 7-26 nM range. These affinities represented, however, only 1.9-7. 5% of the affinity of the 15-mer peptide epitope. In circular dichroism experiments, the peptide epitope showed a propensity to have some stabilized conformation, whereas a low-affinity peptide selected by phage-display did not. To try to decipher the molecular basis of this difference in affinity, new peptides were prepared by grafting the N- or the C-terminal sequence of the peptide epitope to the Y-TEPK motif of a low-affinity peptide selected by phage-display. These hybrid peptides showed marked increases both in affinity (as assessed using BIACORE) and in inhibitory potency (as assessed in competition ELISA), compared with the parent sequence. Thus, the sequences flanking the motif, although not containing critical residues, convey some determinants necessary for high affinity. The affinity of a given peptide strongly depends on its capacity to maintain the antigenically reactive structure it has on the phage, implying that it is impossible to predict whether high- or low-affinity peptides will be obtained from phage display.  相似文献   

13.
An analysis of non-biotinylated camptothecin (CPT) binding to the C-20-biotinylated CPT binding peptide NSSQSARR was carried out using two methods, quartz-crystal microbalance (QCM) and surface plasmon resonance (SPR). The peptide was immobilized peptide on a sensor chip and showed a dissociation constant (KD) of approximately 0.1 microM against CPT in QCM and SPR experiments.  相似文献   

14.
Spleen cells from hamsters immunized with recombinant mouse interferon-gamma (IFN-gamma) were fused with mouse myeloma cells, resulting in the production of four anti-IFN-gamma monoclonal antibodies. Binding of 125I-IFN-gamma by these protein A-bound antibodies was specifically blocked by cold IFN-gamma. Binding by three of these antibodies was also blocked by a synthetic peptide corresponding to the N-terminal 1-39 amino acids of IFN-gamma, whereas a corresponding C-terminal (95-133) peptide had no effect on binding. The N-terminal specificity of these three antibodies was confirmed by their specific binding of 125I-N-terminal (1-39) peptide. One of the N-terminal specific monoclonal antibodies inhibited both antiviral and macrophage priming (for tumor cell killing) activities of IFN-gamma, whereas the other two had no effect on either biologic function. The selectivity of the inhibition of IFN-gamma function was not due to a differential ability of the N-terminal specific antibodies to bind IFN-gamma. Blocking experiments with cold IFN-gamma and N-terminal peptide suggest that the epitope specificities of the monoclonal antibodies could be determined by the conformational or topographic structure of IFN-gamma. An exact determination of the epitope specificity of the monoclonal antibody that inhibited IFN-gamma function could provide insight into the structural basis for the role of the N-terminal domain in the biologic function of IFN-gamma. Polyclonal antibodies to either the N-terminal or the C-terminal peptides also inhibited both the antiviral and the macrophage-priming activities of IFN-gamma. All of the antibodies that inhibited IFN-gamma function also blocked binding of IFN-gamma to membrane receptor on cells, whereas antibodies that did not block function also did not inhibit binding. The data suggest that both the N-terminal and the C-terminal domains of IFN-gamma play an important role in its antiviral and macrophage-priming functions, possibly in a cooperative manner.  相似文献   

15.
A polymorphic HLA-DR mAb, TAL15.1, was produced against L cells transfected with DR alpha- and beta-chain cDNA from a cell line homozygous for HLA-DRw8. This antibody reacted with DRw8 plus all other DR types except DR3 and DRw52. DR3 and DRw52 differ uniquely from other other DR antigens at position 77 in the beta 1-domain of their beta-chains where there is asparagine instead of threonine. In Western blots the antibody reacted with DR alpha/beta-dimer but not with free alpha- or beta-chains. Two-dimensional gel analysis of a DRw11, DRw52 cell line showed that TAL15.1 immunoprecipitated the DR products. Although it also coprecipitated the DQ beta chain products, flow microfluorimetric analysis with various transfectant cell lines showed that TAL15.1 failed to bind the DQ or DP products tested. We conclude that TAL15.1 is a DR-specific polymorphic antibody whose activity correlates with a specific residue. It has already proved to be a valuable reagent for distinguishing DR3 homozygotes from DR3, DRw6 heterozygotes, which have in the past been difficult to separate.  相似文献   

16.
The MDR1-P-glycoprotein binding sites of three different murine monoclonal antibodies (MM4.17, MM6.15 and MC57), directed towards living, intact human multidrug-resistant cells were investigated in order to study P-glycoprotein topology. By using synthetic peptide scanning, we demonstrated that well-defined regions localized on the predicted first, fourth and sixth extracellular loops are external. On the basis of the structure of MM6.15 epitope, which is distributed on the above three different extracellular loops (and thus is discontinuous), P-glycoprotein molecules result to be differently organized in the lipid bilayer. Moreover, the outcome of the MC57 and MM4.17 epitopes localization experiments, obtained through the use of phage-displayed peptide libraries, represent an additional challenge to the classical 12-transmembrane domain model of P-glycoprotein, since they agree with the novel topography of the molecule (10-transmembrane domain), which was recently proposed on the basis of biochemical and expression studies.  相似文献   

17.
Four murine monoclonal antibodies reactive with distinctive regions of the hexose core domain of Salmonella lipopolysaccharide (LPS) were generated and their epitope specificities were delineated. MAST 56 (IgG1) and MAST 50 (IgG3) antibodies elicited by immunizations with Salmonella typhimurium Rb1 and Rb2 mutants, reacted selectively in enzyme immunoassay with the LPS from rough mutants. In contrast, MATy 1 (IgM) and MATy 2 (IgG2b) antibodies raised by an attenuated Salmonella typhi 620 Ty strain were reactive with LPS from both smooth and rough Salmonellae. Immunoblotting analysis showed that MATy 1 distinguished only the bottom bands (naked LPS core) among the heterogeneous LPS populations, whereas MATy 2 gave a ladder pattern (reactive with both naked and O-chain-substituted LPS cores). Differential binding specificities of MATy 1 and MATy 2 antibodies to the naked and capped LPS cores were further analyzed utilizing S. typhimurium polysaccharide fractions with different O-chain:core ratios which were obtained after separation by Sephacryl S-200 chromatography. Steric effects on the antibody reactivity by the bulky O-polysaccharide chain were detected. The use of chemically defined native and synthetic saccharides as inhibitors, in combination with the conformation of the Salmonella core oligosaccharide, permitted the definition of antigenic determinants carried in the core domain recognized by each antibody: (i) the branches I and VIII are essential for MATy 1 recognition, (ii) the backbone III-IV-V for MATy 2, (iii) the backbone II-III-IV-V for MAST 56, and (iv) the backbone plus the branch III-IV-V-VIII for MAST 50. (formula; see text)  相似文献   

18.
Matrix metalloproteinases (MMPs) play critical roles in a multiple number of autoimmunity diseases progression and metastasis of solid tumor. Gelatinases including MMP-2 and MMP-9 are extremely overexpressed in multiple pathological processes. MMP-9 and MMP-2 breakdown the extracellular matrix component gelatin very efficaciously. Therefore, designing and expansion of MMPs inhibitors can be an engrossing plan for therapeutic intermediacy. Anyway, a wide range of MMPs inhibitors face failure in several clinical trials. Due to sequence and structural conservation across the various MMPs, achieving specific and selective inhibitors is very demanding. In the current study, a phage-displayed peptide library was screened using active human recombinant MMP-9 protein and evaluated by enzyme-linked immunosorbent assay. Here, we isolate novel peptide sequence from phage display peptide libraries that can be a specific gelatinase inhibitor. Interestingly, in silico molecular docking showed strong interactions between the peptide three-dimensional models and some important residues of the MMP-9 and MMP-2 proteins at the fibronectin domain. A consensus peptide sequence was then synthesized (named as RSH-12) to evaluate its inhibitory potency by in vitro assays. Zymography assay was employed to evaluate the effect of RSH-12 on gelatinolysis activity of MMP-2 and MMP-9 secretion from the HT1080 cells using different concentrations of RSH-12 and inhibiting MMP-9- and MMP-2-driven gelatin proteolysis, measured by fluorescein isothiocyanate-gelatin degradation assay and HT1080 cell invasion assay on Matrigel (gelatinous protein mixture). The negative control peptide (CP) with the irrelevant sequence and no MMP inhibition properties and the positive control compound (GM6001) as a potent inhibitor of MMPs were used to assess the selectivity and specificity of gelatinases inhibition by RSH-12. Therefore, RSH-12 decreased the gelatin degradation by specifically preventing gelatin binding to MMP-9 and MMP-2. Selective gelatinase inhibitors may prove the usefulness of the new peptide discovered in tumor targeting and anticancer and anti-inflammation therapies.  相似文献   

19.
There is a strong need for rapid and reliable epitope mapping methods that can keep pace with the isolation of increasingly larger numbers of mAbs. We describe here the identification of a conformational epitope using Phage-based Representation OF ImmunoLigand Epitope Repertoire (PROFILER), a recently developed high-throughput method based on deep sequencing of antigen-specific lambda phage-displayed libraries. A novel bactericidal monoclonal antibody (mAb 9F11) raised against Neisseria meningitidis adhesin A (NadA), an important component of the Bexsero® anti-meningococcal vaccine, was used to evaluate the technique in comparison with other epitope mapping methods. The PROFILER technology readily identified NadA fragments that were capable of fully recapitulating the reactivity of the entire antigen against mAb 9F11. Further analysis of these fragments using mutagenesis and hydrogen-deuterium exchange mass-spectrometry allowed us to identify the binding site of mAb 9F11 (A250-D274) and an adjoining sequence (V275-H312) that was also required for the full functional reconstitution of the epitope. These data suggest that, by virtue of its ability to detect a great variety of immunoreactive antigen fragments in phage-displayed libraries, the PROFILER technology can rapidly and reliably identify epitope-containing regions and provide, in addition, useful clues for the functional characterization of conformational mAb epitopes.  相似文献   

20.
A 10-mer random peptide library displayed on filamentous bacteriophage was used to determine the molecular basis of the interaction between the monoclonal anti-colicin A antibody 1C11 and its cognate epitope. Previous studies established that the putative epitope recognized by 1C11 antibody is composed of amino acid residues 19-25 (RGSGPEP) of colicin A. Using the phage display technique it was confirmed that the epitope of 1C11 antibody was indeed restricted to residues 19-25 and the consensus motif RXXXPEP was identified. Shorter consensus sequences (RXXPEP, RXXEP, KXXEP) were also selected. It was also demonstrated that the disulfide bond found in one group of the selected peptides was crucial for 1C11 antibody recognition. It was shown that cyclization of the peptides by disulfide bond formation could result in a structure that mimics the natural epitope of colicin A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号