首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[3H]ET (etorphine), which is considered either as an "universal" ligand or a mu agonist, interacts with identical affinities KD = 0.33-0.38 nM to hybrid cells and rabbit cerebellum, pure delta and mu-enriched opioid receptor preparations, respectively. In rat brain tissue, [3H]ET binding is inhibited by DAGO (Tyr-D-Ala-Gly-(Me)-Phe-Gly-ol), a mu selective agonist, in a competitive manner without apparent modification of the maximal number of sites. Furthermore, even at a DAGO concentration (300 nM) which should be sufficient to block [3H]ET interaction with mu sites, no variation in the total capacity of the tritiated ligand is observed. In contrast, DTLET (Tyr-D-Thr-Gly-Phe-Leu-Thr), a delta-preferential agonist, blocks [3H]ET binding in rat brain at a concentration able to saturate delta-sites. At higher concentrations, where DTLET cross reacts with mu-sites, this ligand exhibits similar properties to those of DAGO. These data are very different from those obtained with [3H]EKC (ethylketocyclazocine), another "universal" ligand, the binding properties of which are easily explained by the occurrence in rat brain tissue of independent sites exhibiting pharmacological profiles of mu, delta and kappa sites. Our results underline the possible misinterpretation of binding data obtained by using [3H] etorphine as a non selective ligand.  相似文献   

2.
We report the synthesis and binding properties of specific photoaffinity ligands for mu and delta opioid receptor subtypes. These ligands are derived from DAGO: Tyr-D-Ala-Gly-NMePhe-Gly-ol, a mu selective probe and DTLET: Tyr-D-Thr-Gly-Phe-Leu-Thr, a delta selective probe by modifying the Phe 4 residue. These modifications are: i) a nitro group on the para position of Phe ring as Phe(4 NO2) or Nip, ii) an azido group as Phe(4 N3) or AZ. Pharmacological responses on mouse vas deferens (delta sites) and guinea pig ileum (mu sites), as well as competition experiments with [3H] DAGO and [3H] DTLET on crude rat brain membranes have been performed. The nitro group on the phenyl ring of the Phe residue preserves the affinity and selectivity of each probe: NipDAGO for the mu sites, NipDTLET for the delta ones. However the nitro probes do not appear to be photoactivable by u.v. irradiation. Likewise, azidation of the phenyl ring of the Phe residue does not change the receptor selectivity of each probe, but AZDAGO has less affinity than its parent molecule DAGO, while AZDTLET has more affinity than DTLET. These compounds are photoactivable and provide an efficient tool to characterize and isolate the different receptor subtypes, especially the delta site.  相似文献   

3.
A study of the onset of cation and guanine nucleotide regulation of delta, mu, and kappa rat brain opioid receptors during postnatal development was undertaken. Site-specific binding assays were utilized for each receptor type and the effects of 0.5 mM MnCl2, 100 mM NaCl, and/or 50 microM guanosine-5'-(beta, gamma-imido) triphosphate [Gpp(NH)p] were assessed. The most pronounced changes of opioid binding were seen in the presence of Mn2+. In adults, agonist binding to delta sites was stimulated by Mn2+, whereas that to mu sites was not affected and kappa binding was inhibited. The postnatal development of Mn2+ regulation for the three receptor subtypes was distinctly different. The largest effects were seen on delta sites detected in the early neonatal period, Mn2+ eliciting a 68% stimulation of binding over controls at day 1. Significant inhibition of kappa site binding by Mn2+ was detected only after the third postnatal week. Mn2+ caused a significant reversal of Gpp(NH)p inhibition of delta binding in the early neonatal period, exceeding that in the absence of regulators. Inhibition of mu and delta receptor binding by Na+ was greater, and the Mn2+ reversal of this effect was smaller, in the first 2 postnatal weeks than in adults. Gpp(NH)p + Na+ regulation did not change appreciably during the postnatal period. However, Mn2+ reversal of the considerable inhibition elicited by the combination of Na+ and Gpp(HN)p was developmental time-dependent. The data are discussed in terms of multiple sites of interaction for guanine nucleotides and cations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of mono- and di-valent cations and the nonhydrolyzable guanyl nucleotide derivative 5'-guanylimidodiphosphate (Gpp(NH)p) on the binding of the selective, high affinity mu-opiate receptor agonist, [3H]DAGO ([3H]Tyr-D-Ala-Gly-Mephe-Gly-ol), to rat brain membranes were studied in a low ionic strength 5 mM Tris-HCl buffer. Na+ and Li+ (50 mM) maximally increased [3H]DAGO binding (EC50 values for Na+, 2.9 mM and Li+, 6.2 mM) by revealing a population of low affinity binding sites. The density of high affinity [3H]DAGO binding sites was unaffected by Na+ and Li+, but was maximally increased by 50 mM K+ and Rb+ (EC50 values for K+, 8.5 mM and Rb+, 12.9 mM). Divalent cations (Ca2+, Mg2+; 50 mM) inhibited [3H]DAGO binding. Gpp(NH)p decreased the affinity of [3H]DAGO binding, an effect that was enhanced by Na+ but not by K+. The binding of the mu-agonist [3H]dihydromorphine was unaffected by 50 mM Na+ in 5 mM Tris-HCl. In 50 mM Tris-HCl, Na+ (50 mM) inhibited [3H]DAGO binding by decreasing the density of high affinity binding sites and promoting low affinity binding. The effects of Na+ in 5 mM and 50 mM Tris-HCl were also investigated on the binding of other opiate receptor agonists and antagonists. [3H]D-Ala-D-Leu-enkephalin binding was increased and inhibited. [3H]etorphine binding increased and was unchanged, and both [3H]bremazocine and [3H]naloxone binding increased by 50 mM Na+ in 5 mM and 50 mM Tris-HCl, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In the present study we examined the interaction of opiates with the delta and mu opioid binding sites in the bovine adrenal medulla. [3H][D-Ala2, D-Leu5]-enkephalin ( [3H]DADLE) in the presence of saturating concentrations of morphiceptin was used to analyze delta site interactions, whereas either [3H]DADLE in the presence of saturation concentrations of [D-Ser2, Leu5]-enkephalin-Thr6 (DSLET) or [3H][D-Ala2, Me-Phe4, Gly5-ol]-enkephalin ( [3H]DAGO) was used for the determination of mu sites. Both binding sites were found to interact stereoselectively with opiates. The binding was affected differentially by proteolytic enzymes (trypsin, alpha-chymotrypsin, pepsin), N-ethylmaleimide, and A2-phospholipase. Kinetic and equilibrium binding studies revealed that in each case radiolabeled opiates interact with one class of binding sites, following simple second-order bimolecular kinetics. Competition for binding by opiates and opioid peptides confirmed the delta and mu selectivity of these sites. Monovalent (Na+, Li+, K+) and divalent (Mg2+, Mn2+, Ca2+) ions interacted differentially with these two binding sites: In general, monovalent cations affected preferentially the apparent number of binding sites, whereas divalent ions modified the equilibrium dissociation constant. Furthermore, positive or negative cooperativity and an apparent heterogeneity of binding sites were detected under some ionic conditions.  相似文献   

6.
Possible interactions between Met-enkephalin and cholecystokinin (CCK)-containing neurons in the rat substantia nigra were investigated by looking for the effects of various opioid receptor ligands and inhibitors of enkephalin-degrading enzymes on the K(+)-evoked overflow of CCK-like material (CCKLM) from substantia nigra slices. The delta-opioid agonists D-Pen2, D-Pen5-enkephalin (50 microM) and Tyr-D-Thr-Gly-Phe-Leu-Thr (DTLET; 3 microM) enhanced, whereas the mu-opioid agonists Tyr-D-Ala-Gly-MePhe-Gly-ol (DAGO; 10 microM) and MePhe3, D-Pro4-morphiceptin (PL 017; 10 microM) decreased, the K(+)-evoked release of CCKLM. By contrast, the kappa-opioid agonist U-50488 H (5 microM) was inactive. The stimulatory effect of DTLET could be prevented by the delta antagonist ICI-154129 (50 microM), but not by the mu antagonist naloxone (1 microM). Conversely, the latter drug, but not ICI-154129, prevented the inhibitory effect of DAGO and PL 017. A significant increase in CCKLM overflow was observed upon tissue superfusion with the peptidase inhibitors kelatorphan or bestatin plus thiorphan. This effect probably resulted from the stimulation of delta-opioid receptors by endogenous enkephalins protected from degradation, because it could be prevented by ICI-154129 (50 microM). Furthermore the peptidase inhibitors did not enhance CCKLM release further when delta-opioid receptors were stimulated directly by DTLET (3 microM). These data indicate that opioids acting on delta and mu receptors may exert an opposite influence, i.e., excitatory and inhibitory, respectively, on CCK-containing neurons in the rat substantia nigra.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
[3H]GABA binding to crude synaptic membranes of rat brain was studied in an attempt to identify GABA binding to its synaptic receptor in the presence of Na+. Membrane vesicles prepared from crude synaptic membrane fractions were useful as a tool to differentiate synaptic GABA receptors from GABA uptake sites. The crude synaptic membranes treated with Triton X-100 [membranes (TX)] involved two classes of GABA binding sites (KD = 38.7 and 78.0 nM) in the absence of Na+, but the high-affinity sites disappeared in the presence of Na+ and a single class of GABA binding sites (KD = 75.0 nM) was detected. The failure to detect an active uptake of [3H]GABA into the vesicles prepared from membranes (TX) suggests that the [3H]GABA binding in the presence of Na+ was related to synaptic GABA receptors. It is probable that Na+ could mask the presence of the high-affinity class of GABA receptor.  相似文献   

8.
The present study investigated the effects of a striatal lesion induced by kainic acid on the striatal modulation of dopamine (DA) release by mu- and delta-opioid peptides. The effects of [D-Pen2,D-Pen5]-enkephalin (DPDPE) and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAGO), two highly selective delta- and mu-opioid agonists, respectively, were studied by microdialysis in anesthetized rats. In control animals both opioid peptides, administered locally, significantly increased extracellular DA levels. The effects of DPDPE were also observed in animals whose striatum had been previously lesioned with kainic acid. In contrast to the effects of the delta agonist, the significant increase induced by DAGO was no longer observed in lesioned animals. These results suggest that delta-opioid receptors modulating the striatal DA release, in contrast to mu receptors, are not located on neurons that may be lesioned by kainic acid.  相似文献   

9.
The binding of [3H]Tyr-D-Ala-Gly-(N-Me)Phe-Gly-ol ([3H]DAGO) and [3H]Tyr-D-Thr-Gly-Phe-Leu-Thr ([3H]DTLET), selective agonists for mu- and delta-opioid binding sites, respectively, has been investigated using different rat brain tissue preparations and buffer systems. The results were compared with the binding of the ligands to crude membrane fractions in Tris-HCl, the most commonly used preparation for binding studies. In both rat brain membranes and intact cells, Krebs-HEPES induced a decrease in the affinities of [3H]DAGO and [3H]DTLET, but little modification was observed when 20-microns tissue slices were used, whatever the brain area studied. The dissociation rate of [3H]DTLET was clearly dependent on the tissue preparation used, because the koff value of this ligand in Krebs-HEPES was 2.5-fold higher in membrane fractions than that measured in intact cells. The kinetic dissociation constant of [3H]DTLET in membrane fractions in Krebs-HEPES was 6.5-fold greater than that measured in Tris-HCl. In intact cells, the koff value for [3H]DTLET was lower than that found in membrane fractions in Krebs-HEPES and similar to that observed in membrane preparations in Tris-HCl supplemented with 30 mM NaCl. These data suggest (a) that the koff constant of [3H]DTLET was regulated by the ionic environment of the delta-opioid receptor, which is clearly dependent on the preservation of cellular structure, and (b) that opioid receptors could exist under different states that are regulated, in part, by the intracellular Na+ concentration.  相似文献   

10.
The sigma opiates differ from other opiates in their stimulatory and psychotomimetic actions. The sigma opiate [3H](-)-SKF-10,047 has been used to characterize sigma receptors in rat nervous tissue. Binding of [3H](-)-SKF-10,047 to rat brain membranes was of high affinity, saturable, and reversible. Scatchard analysis revealed the apparent interaction of this drug with two distinct binding sites characterized by affinities of 0.03 and 75 nM (5 mM Tris-HCl buffer, pH 7.4, at 4 degrees C). Competition analyses involving rank order determinations for a series of opiates and other drugs indicate that the high-affinity binding site is the mu opiate receptor. The lower-affinity site (revealed after suppression of mu and delta receptor binding) has been identified as the sigma opiate/phencyclidine receptor. In vitro autoradiography has been used to visualize neuroanatomical patterns of receptors labeled using [3H](-)-SKF-10,047 in the presence of normorphine and [D-Ala2,D-Leu5]enkephalin to block mu and delta interactions, respectively. Labeling patterns differ markedly from those for mu, delta, or kappa receptors. The highest densities (determined by quantitative autoradiography) are found in the medial portion of the nucleus accumbens, amygdaloid nucleus, hippocampal formation, central gray, locus coeruleus, and the parabrachial nuclei. Receptors in these structures could account for the stimulatory, mood-altering, and analgesic properties of the sigma opiates. Although not the most selective sigma opiate ligand, [3H](-)-SKF-10,047 binds to sigma opiate receptors in brain, and this interaction can be readily distinguished from its interactions with other classes of brain opiate receptors.  相似文献   

11.
Chronic ethanol ingestion by mice resulted in the loss of high-affinity beta-adrenergic agonist binding sites and a significant decrease in activation of adenylate cyclase by guanine nucleotides and beta-adrenergic agonists in the hippocampus, although no significant change was noted in the total number of beta-adrenergic receptors, as defined by the binding of the antagonist [125]iodocyanopindolol. In cerebellum, chronic ethanol ingestion resulted in a 16% decrease in the total concentration of beta-adrenergic receptors and in a decrease in the affinity for agonist of the high-affinity beta-adrenergic agonist binding sites. However, neither the amount of the high-affinity agonist binding sites nor the activation of adenylate cyclase by agonist was affected. The different responses to ethanol in hippocampus and cerebellum may result from quantitative differences in distribution of beta 1- and beta 2-adrenergic receptors in the tested brain areas and/or differential effects of ethanol on stimulatory guanine nucleotide binding protein in these brain areas.  相似文献   

12.
T Kline  H Park  L R Meyerson 《Life sciences》1989,45(21):1997-2005
The binding of [3H] 8-OH-DPAT to membrane-bound 5-HT1A receptors from bovine hippocampus was saturable and corresponded to a single high-affinity state. Solubilization of the bovine hippocampal membranes with 10 mM CHAPS containing 200 mM NaCl, renders a preparation which binds [3H] 8-OH-DPAT with high-affinity (Kd = 1.9 nM) and is guanine nucleotide sensitive and ketanserin insensitive. 50% of [3H] 8-OH-DPAT binding activity is solubilized. The presence of GMP-P(NH)P promotes a low-affinity (Kd = 9.6 nM) state which is characteristic of receptors coupled to G-proteins. GMP-P(NH)P markedly accelerates the dissociation [3H] 8-OH-DPAT from solubilized membranes while having negligible effects on association. Thus, the agonist can activate the terniary complex rather than to promote its formation. 8-OH DPAT, WB 4101 and 5-carboxamidotryptamine dose responsively inhibit soluble [3H] 8-OH-DPAT binding with IC(50) values of 16.1, 15.6 and 1.3 nM, respectively. The CHAPS solubilized membrane preparation retains many of the [3H] 8-OH-DPAT binding characteristics of the membrane bound form.  相似文献   

13.
Superfusion of slices from the dorsal half of the lumbar enlargement of rat spinal cord with Krebs-Henseleit medium supplemented with 30 microM bacitracin allowed the collection of substance P-like immunoreactive material (SPLI), which was released at a rate of approximately 10 pg/4 min. Tissue depolarization by an excess of K+ (30-60 mM) or veratridine (50 microM) induced a marked increase in SPLI outflow, provided that Ca2+ was present in the superfusing fluid. K+- or veratridine-induced SPLI overflow could be modulated in opposite directions by mu and delta opioid receptor agonists. Thus, the two preferential mu agonists Tyr-D-Ala-Gly-MePhe-Gly-ol (DAGO; 10 microM) and Tyr-D-Ala-Gly-MePhe-Met(O)5-OH (FK-33824; 0.1 microM) enhanced SPLI overflow from depolarized tissues, whereas the selective delta agonists Tyr-D-Thr-Gly-Phe-Leu-Thr (deltakephalin; 3 microM) and [2-D-penicillamine, 5-D-penicillamine]enkephalin (50 microM) reduced it. The effect of DAGO was antagonized by a low concentration (1 microM) of naloxone but not by the selective delta antagonist ICI-154129 (50 microM). In contrast, the latter drug prevented the inhibitory influence of delta agonists on K+-induced SPLI release. Complementary experiments with morphine (10 microM) and [2-D-alanine, 5-D-leucine]enkephalinamide (3 microM), in combination with 1 microM naloxone or 50 microM ICI-154129 for the selective blockade of mu or delta receptors, respectively, confirmed that the stimulation of mu receptors increased, whereas the stimulation of delta receptors reduced, SPLI overflow. The results suggest that, at the spinal level, and antinociceptive action of delta but not mu agonists might involve a presynaptic inhibition of substance P-containing primary afferent fibers.  相似文献   

14.
Previous study has shown that cholecystokinin (CCK) octapeptide (CCK-8) suppressed the binding of opioid receptors to the universal opioid agonist [3H]etorphine. In the present study, highly selective tritium-labeled agonists for the mu-[(tryrosyl-3,5-3H][D-Ala2,MePhe4,Gly-ol5]enkephalin ([3H]DAGO], delta- ([tyrosyl-3,5-3H][D-Pen2,5]enkephalin ([3H]DPDPE], and kappa- ([3H]U69,593) opioid receptors were used to clarify which type(s) of opioid receptor in rat brain homogenates is suppressed by CCK-8. In the competition experiments, CCK-8 suppressed the binding of [3H]DAGO and [3H]U69,593 but not that of [3H]DPDPE to the respective opioid receptor. This effect was blocked by the CCK antagonist proglumide at 1 mumol/L. In the saturation experiments, CCK-8 at concentrations of 0.1 nmol/L to 1 mumol/L decreased the Bmax of [3H]DAGO binding sites without affecting the KD; on the other hand, CCK-8 increased the KD of [3H]U69,593 binding without changing the Bmax. The results suggest that CCK-8 inhibits the binding of mu- and kappa-opioid receptors via the activation of CCK receptors.  相似文献   

15.
N A Sharif  J Hughes 《Peptides》1989,10(3):499-522
The opioid peptides, [3H]DAGO and [3H]DPDPE, bound to rat and guinea pig brain homogenates with a high, nanomolar affinity and to a high density of mu and delta receptors, respectively. [3H]DAGO binding to mu receptors was competitively inhibited by unlabelled opioids with the following rank order of potency: DAGO greater than morphine greater than DADLE greater than naloxone greater than etorphine much greater than U50488 much greater than DPDPE. In contrast, [3H]DPDPE binding to delta receptors was inhibited by compounds with the following rank order of potency: DPDPE greater than DADLE greater than etorphine greater than dynorphin(1-8) greater than naloxone much greater than U50488 much greater than DAGO. These profiles were consistent with specific labelling of the mu and delta opioid receptors, respectively. In vitro autoradiographic techniques coupled with computer-assisted image analyses revealed a discrete but differential anatomical localization of mu and delta receptors in the rat and guinea pig brain. In general, mu and delta receptor density in the rat exceeded that in the guinea pig brain and differed markedly from that of kappa receptors in these species. However, while mu receptors were distributed throughout the brain with "hotspots" in the fore-, mid- and hindbrain of the two rodents, the delta sites were relatively diffusely distributed, and were mainly concentrated in the forebrain with particularly high levels within the olfactory bulb (OB), n. accumbens and striatum. Notable regions of high density of mu receptors in the rat and guinea pig brain were the accessory olfactory bulb, striatal "patches" and "streaks," amygdaloid nuclei, ventral hippocampal subiculum and dentate gyrus, numerous thalamic nuclei, geniculate bodies, central grey, superior and inferior colliculi, solitary and pontine nuclei and s. nigra. Tissues of high delta receptor concentration included, OB (external plexiform layer), striatum, n. accumbens, amygdala and cortex (layers I-II and V-VI). Delta receptors in the guinea pig were, in general, similarly distributed to the rat, but in contrast to the latter, the hindbrain regions such as the thalamus, geniculate bodies, central grey and superior and inferior colliculi of the guinea pig were apparently more enriched than the rat. These patterns of mu and delta site distribution differed dramatically from that of the kappa opioid sites in these species studied with the peptide [125I]dynorphin(1-8).  相似文献   

16.
Characterization of Opioid Receptor Subtypes in Solution   总被引:7,自引:5,他引:2  
Stable opioid receptor binding activity that retains distinct subtype specificities (mu, delta, and kappa) has been obtained in high yields in digitonin extracts of rat brain membranes that had been preincubated with Mg2+ prior to solubilization. The dependence on Mg2+ ions for receptor activity is also expressed in the soluble state, where the presence of Mg2+ leads to high-affinity and high-capacity opioid peptide binding to the delta, mu, and kappa sites (the latter subtype measured by the binding of [3H]dynorphin1-8). Binding of opiate alkaloids to soluble receptor sites is less dependent on Mg2+ than is opioid peptide binding. Soluble opioid binding activity shows the same sensitivity to Na+ ions and guanine nucleotides as the membrane-bound receptor. The ligand-receptor interactions give evidence of strong positive cooperativity, which is interpreted in terms of association-dissociation of receptor subunits on ligand binding in solution. Binding of enkephalin peptides is associated with the large macromolecules present (apparent Stokes radii greater than 60 A), whereas both those and several small species present (less than 60 A) bind opiate alkaloids and dynorphin1-8.  相似文献   

17.
The binding properties of 14 beta-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM [3H] [D-Ala2,(Me)Phe4,Gly(ol)5]enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the mu binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The mu receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the delta-selective peptide [3H] [D-penicillamine2,D-penicillamine5]enkephalin (DPDPE) and (-)-[3H]bremazocine in the presence of mu and delta blockers, selective for kappa binding sites. Under conditions where 90% of the 0.25 nM [3H]DAGO binding sites were blocked, 80% of the 0.8 nM [3H]naloxone binding and 50% of the 0.25 nM 125I-labeled beta h-endorphin binding were inhibited by BAM alkylation. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the mu site did not afford protection.2+hese studies have demonstrated that when a disulfide bond  相似文献   

18.
The preferential conformations of the delta selective opioid peptides DPLPE (Tyr-c[D X Pen-Gly-Phe-Pen]) and DTLET (Tyr-D X Thr-Gly-Phe-Leu-Thr) were studied by 400 MHz 1H n.m.r. spectroscopy in DMSO-d6 solution. In neutral conditions, the weak NH temperature coefficients of the C-terminal residue (Pen5 or Thr6), associated with interproton NH-NH and alpha-NH NOE's (ROESY experiments), indicated large analogies between the backbone folding tendency of both the linear and cyclic peptides. Various gamma and/or beta turns may account for these experimental data. A similar orientation of the N-terminal tyrosine related to the folded backbones is observed for the two agonists, with a probable gamma turn around the amino acid in position 2. Finally, a short distance, about 10 A, between Tyr and Phe side chains and identical structural roles for threonyl and penicillamino residues are proposed for both peptides. These results suggest the occurrence of similar conformers in solution for the constrained peptide DPLPE and the flexible hexapeptide DTLET. Therefore, it may be hypothesized that the enhanced delta selectivity of DPLPE is related to a very large conformational expense of energy needed to interact with the mu opioid receptor, a feature not encountered in the case of DTLET. These findings might allow peptides to be designed retaining a high affinity for delta opioid receptors associated with a very low cross-reactivity with mu binding sites.  相似文献   

19.
The effects of Mg2+ and guanine nucleotides on glucagon binding to its receptor were studied using [125I-Tyr10]monoiodoglucagon. Contrary to findings with beta-adrenergic receptors, high affinity binding of the stimulatory hormone was not dependent on Mg2+ and low affinity binding could be obtained on nucleotide addition regardless of presence of Mg2+. GDP, guanyl-5'-yl thiophosphate (GDP beta S), GTP, and guanyl-5'-yl imidodiphosphate (GMP-P(NH)P) were all able to induce low affinity hormone binding. Since the Ns component of adenylyl cyclase, with which the receptor interacts, is inactive in stimulating the catalytic component C of adenylyl cyclase in the absence of Mg2+, both before and after GDP addition, it is suggested that Ns has at least two domains that change conformation independently of each other: a r domain, that interacts with the receptor and confers to it high affinity binding, and a c domain, that interacts with the catalyst C and stimulates it. It is suggested further that Ns is r+c- when stabilizing the receptor in its conformation with high affinity for hormone, and r-c- when under the influence of GDP which results in the receptor adopting the conformation that exhibits low affinity for the hormone. Comparison of potencies of the four nucleotides to induce low affinity binding showed that GDP and GDP beta S were equipotent and 10 times more potent than GTP and 100 times more potent than GMP-P(NH)P. Under the conditions used it was impossible to substantiate that the effects of GTP or GMP-P(NH)P were not due to formation of GDP from GTP or presence of GDP-like material in GMP-P(NH)P. It is suggested that, contrary to widely held opinions, GDP and GDP-like compounds, and not GTP or its analogs, are responsible for the lowering of the affinity of adenylyl cyclase stimulating receptors for their hormones or agonists. Furthermore, the experiments suggest that the c+ conformation of the c domain of Ns co-exists with the r+ and not the r- conformation of its r domain.  相似文献   

20.
The previously described cyclic mu opioid receptor-selective tetrapeptide Tyr-c[D-Cys-Phe-D-Pen]NH2 (Et) (JOM-6) was modified at residues 1 and 3 by substitution with various natural and synthetic amino acids, and/or by alteration of the cyclic system. Effects on mu and delta opioid receptor binding affinities, and on potencies and efficacies as measured by the [35S]-GTPgammaS assay, were evaluated. Affinities at mu and delta receptors were not influenced dramatically by substitution of Tyr1 with conformationally restricted phenolic amino acids. In the [35S]-GTPgammaS assay, all of the peptides tested exhibited a maximal response comparable with that of fentanyl at the mu opioid receptor, and all showed high potency, in the range 0.4-9nM. However, potency changes did not always correlate with affinity, suggesting that the conformation required for binding and the conformation required for activation of the opioid receptors are different. At the delta opioid receptor, none of the peptides were able to produce a response equivalent to that of the full delta agonist BW 373,U86 and only one had an EC50 value of less than 100nM. Lastly, we have identified a peptide, D-Hat-c[D-Cys-Phe-D-Pen]NH2 (Et), with high potency and > 1,000-fold functional selectivity for the mu over delta opioid receptor as measured by the [35S]-GTPgammaS assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号