首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neither colchicine nor ultracentrifugation, singly or in sequence, significantly alters the normal Rabl distribution of interphase or prophase telomeres in root tip cells of Allium cepa L. The position of telomeres was determined by C-banding, which stains A. cepa chromosomes only at the telomeres. Centrifugation displaces mitotic figures toward one side of the cell, but otherwise their mitotic configurations are little changed. These light microscope results are interpreted to show that a) interphase and prophase telomeres are attached strongly to some component of the nuclear envelope; b) a colchicine-sensitive component apparently does not attach interphase and prophase telomeres to the nuclear envelope; and c) chromosomes at all stages of the cell cycle are attached to some structure, nuclear envelope, and/or spindle fibers.  相似文献   

2.
Summary The interphase nuclei, especially of the latest stages (G2 or early prophase), in the mouse and rat livers were stained blue in the histochemical demonstration of acidic polysaccharide according to the method of Mowry, while the mitotic chromosomes (meta-, ana- and telophase) in the livers, sea urchin embryos as well as root tips of broad beans were stained red, suggesting the presence of neutral polysaccharide. The giant polytenic interphase chromosome of the salivary gland of Chironomus larvae was stained blue in the puffing and nucleolar regions while stained red in the condensed part of the chromosome. 3H-Glucosamine as well as 3H-glucose incorporations into the regenerating rat liver nuclei reached a peak at 30 h after partial hepatectomy when the highest mitosis is seen. These results suggest that the nuclear acid mucopolysaccharide present in the swollen chromosomes may be converted to or replaced with the neutral polysaccharide in the condensed chromosomes such as mitotic chromosomes or polytenic giant interphase chromosomes.  相似文献   

3.
Centrosome duplication and separation are of central importance for cell division. Here we provide a detailed account of this dynamic process in Dictyostelium. Centrosome behavior was monitored in living cells using a γ-tubulin–green fluorescent protein construct and correlated with morphological changes at the ultrastructural level. All aspects of the duplication and separation process of this centrosome are unusual when compared with, e.g., vertebrate cells. In interphase the Dictyostelium centrosome is a box-shaped structure comprised of three major layers, surrounded by an amorphous corona from which microtubules emerge. Structural duplication takes place during prophase, as opposed to G1/S in vertebrate cells. The three layers of the box-shaped core structure increase in size. The surrounding corona is lost, an event accompanied by a decrease in signal intensity of γ-tubulin–green fluorescent protein at the centrosome and the breakdown of the interphase microtubule system. At the prophase/prometaphase transition the separation into two mitotic centrosomes takes place via an intriguing lengthwise splitting process where the two outer layers of the prophase centrosome peel away from each other and become the mitotic centrosomes. Spindle microtubules are now nucleated from surfaces that previously were buried inside the interphase centrosome. Finally, at the end of telophase, the mitotic centrosomes fold in such a way that the microtubule-nucleating surface remains on the outside of the organelle. Thus in each cell cycle the centrosome undergoes an apparent inside-out/outside-in reversal of its layered structure.  相似文献   

4.
C. P. Pussell 《Genetica》1984,62(3):193-201
A model for the arrangement of chromosomes in interphase nuclei is proposed. The model assumes that interphase chromosomes have a Rabl orientation (a relic telophase arrangement). During interphase and prophase telomeres are attached to the nuclear envelope often in pairs. The association of telomeres, homologous or nonhomologous, is based on similarity of arm lengths and occurs at the time the nuclear envelope reforms. At this stage arm lengths will vary to some extent due to the amount of uncoiling etc. The sequence of chromosomes resulting from telomere-telomere pairing may vary among cells, but the number of arrangements will be restricted by arm length similarities.The ramifications of this model on melotic pairing, the constant attachment of chromosomes to some structure throughout the cell cycle, the distribution of genes within nuclei, and chromosome evolution are raised.  相似文献   

5.
INDEPENDENCE OF CENTRIOLE FORMATION AND DNA SYNTHESIS   总被引:13,自引:10,他引:3       下载免费PDF全文
The temporal relationship between cell cycle events and centriole duplication was investigated electron microscopically in L cells synchronized by mechanically selecting mitotic cells. The two mature centrioles which each cell received at telophase migrated together from the side of the telophase nucleus distal to the stem body around to a region of the cytoplasm near the stem body and then into a groovelike indention in the early G1 nucleus, where they were found throughout interphase. Procentrioles appeared in association with each mature centriole at times varying from 4 to 12 h after mitosis. Since S phase was found to begin on the average about 9 h after mitotic selection, it appeared that cells generated procentrioles late in G1 or early in S. During prophase, the two centriolar duplexes migrated to opposite sides of the nucleus and the daughter centrioles elongated to the mature length. To ascertain whether any aspect of centriolar duplication was contingent upon nuclear DNA synthesis, arabinosyl cytosine was added to mitotic cells at a concentration which inhibited cellular DNA synthesis by more than 99%. Though cells were thus prevented from entering S phase, the course of procentriole formation was not detectibly affected. However, cells were inhibited from proceeding to the next mitosis, and the centriolar elongation and migration normally associated with prophase did not occur.  相似文献   

6.
In interphase cells of the SPEV culture treated with Triton X-100, 2 M NaCl, and DNAse, in the presence of 2 mM CuCl2, we clearly revealed a stabilized nuclear protein material (NPM) composed of a peripheral lamina, residual nucleolus, and internal fibrillar network. This network is formed by thin fibrils 10–20 nm in diameter, which are also revealed in the nonhistone matrix of mitotic chromosomes at all stages of mitosis. In mitotic chromosomes, NPM is represented as a network of the 10–20-nm-thick fibrils without any features of the central-axial structures. Beginning from the middle prophase, it is possible to see approached sister chromatids in contact with each other in certain sites, similar to centromeres. At these sites, the thickness of fibrils increases up to 40–50 nm, whereas the fibrils themselves are disposed more tightly; this structure can be seen in the chromosome until telophase. At the end of telophase, the decondensation of chromosomes and formation of two new nuclei whose NPM is analogous to NPM of usual interphase nucleus are observed. Thus, the NPM elements can perform the role of a skeleton in both the interphase nucleus and mitotic chromosomes.  相似文献   

7.
The duration of the different phases of the microtubule and chromosome cycles were estimated in the native diploid cell populations of Allium cepa L root meristems proliferating undisturbed, under steady state conditions, at the physiological temperature of 15°C. The cycles were coupled by considering their fitting in relation to the short process of nuclear envelope breakdown. In the cycle related to cytoplasmic division, the preprophase band which predicts the future position of the phragmoplast made its appearance, as a wide band, 16 mm before the G2 to prophase transition, ie it was only present during the final 5% of the total G2 timing (5 h 30 mm). The band became narrow only 6 mm after prophase had started and it was present in this form for the remaining prophase time (2 h 24 mm). Its disappearance occurred strictly coinciding with nuclear envelope breakdown, at the end of prophase. No microtubules related to cytoplasmic division were apparent until 9 mm after telophase had initiated. The two initial stages of phragmoplast formation which followed occupied, respectively, 27 mm and 54.5 mm of the 2-h long telophase. On the other hand, the third and last stage in phragmoplast formation covered both the final 35 mm of mitosis and the 6 initial mm of the G1 of the next interphase. A very short (less than 4 mm) stage of microtubular nucleation around the nuclear envelope took place immediately afterwards, before the cortical array of microtubules appeared. The microtubule cycle related to nuclear division started with the apparent activation of the future spindle poles 7.4 mm before prophase was over. The mitotic spindle developed in the 5.6 mm long prometaphase. The spindle functioned in metaphase for the 42 mm it lasted, half spindles being separated for the 37 mm anaphase occupied in these cells.  相似文献   

8.
The Nucleolus and Parachromatin of the Ascites Tumor Cell   总被引:1,自引:1,他引:0       下载免费PDF全文
1. A method is described for distinguishing the ribonucleoproteins of the nucleolus and parachromatin of ascitic tumor cells of the mouse. 2. In these cells the transfer of ribonucleoprotein from the nucleus to the cytoplasm can occur in two ways. (a) At the end of prophase the nucleolus separates from the chromosomes and nucleolar fragments are released into the cytoplasm. (b) During prophase the parachromatin is aggregated to form parachromatin bodies which are discharged into the cytoplasm, where they can be detected during metaphase, anaphase, and telophase. 3. A metachromatic form of RNA is demonstrable, and may be synthesized, in close relation to the chromosomes during prophase, metaphase, and anaphase. During telophase the distribution of metachromatic RNA changes, the chromatin loses its metachromasia, and intranuclear metachromatic parachromatin becomes evident.  相似文献   

9.
Orientation of interphase chromosomes as detected by Giemsa C-bands   总被引:2,自引:0,他引:2  
The orientation of Giemsa C-bands has been studied in mitotic and interphase cells of Allium cepa, A. sativum and of Aloe vera. The C-bands in these three species are located at the telomeres, secondary constriction region of the nucleolar chromosomes and the centromeric regions, respectively. Observations in A. cepa and Aloe indicate clearly that the interphase chromosomes are non-random in their orientation and possibly maintain their telophase configuration through the attachment of telomeres and perhaps of kinetochores with the nuclear membrane. Electron micrographs of onion cells also reveal that certain heterochromatic segments are associated with the nuclear membrane. — The nucleolar interstitial C-bands in A. sativum remain free in the nucleoplasm and may come close to each other due to heterochromatic attraction. Such a heterochromatic attraction is also evident between telomeric regions and between centromeres. However, a two by two attachment could not be noticed. A diagrammatic representation of the orientation of interphase chromosomes has been presented.The major part of this work was presented at the First International Congress on Cell Biology, Boston, Sept. 5–10, 1976 (Platform Session 36, J. Cell Biol. 70, 418a (1976)  相似文献   

10.
The nucleolus of Chinese hamster tissue culture cells (strain Dede) was studied in each stage of mitosis with the electron microscope. Mitotic cells were selectively removed from the cultures with 0.2 per cent trypsin and fixed in either osmium tetroxide or glutaraldehyde followed by osmium tetroxide. The cells were embedded in both prepolymerized methacrylate and Epon 812. Thin sections of interphase nucleoli revealed two consistent components; dense 150-A granules and fine fibrils which measured 50 A or less in diameter. During prophase, distinct zones which were observed in some interphase nucleoli (i.e. nucleolonema and pars amorpha) were lost and the nucleoli were observed to disperse into smaller masses. By late prophase or prometaphase, the nucleoli appeared as loosely wound, predominantly fibrous structures with widely dispersed granules. Such structures persisted throughout mitosis either free in the cytoplasm or associated with the chromosomes. At telophase, those nucleolar bodies associated with the chromosomes became included in the daughter nuclei, resumed their compact granular appearance, and reorganized into an interphase-type structure.  相似文献   

11.
We have studied the morphology of nuclei in Drosophila embryos during the syncytial blastoderm stages. Nuclei in living embryos were viewed with differential interference-contrast optics; in addition, both isolated nuclei and fixed preparations of whole embryos were examined after staining with a DNA-specific fluorescent dye. We find that: (a) The nuclear volumes increase dramatically during interphase and then decrease during prophase of each nuclear cycle, with the magnitude of the nuclear volume increase being greatest for those cycles with the shortest interphase. (b) Oxygen deprivation of embryos produces a rapid developmental arrest that is reversible upon reaeration. During this arrest, interphase chromosomes condense against the nuclear envelope and the nuclear volumes increase dramatically. In these nuclei, individual chromosomes are clearly visible, and each condensed chromosome can be seen to adhere along its entire length to the inner surface of the swollen nuclear envelope, leaving the lumen of the nucleus devoid of DNA. (c) In each interphase nucleus the chromosomes are oriented in the "telophase configuration," with all centromeres and all telomeres at opposite poles of the nucleus; all nuclei at the embryo periphery (with the exception of the pole cell nuclei) are oriented with their centromeric poles pointing to the embryo exterior.  相似文献   

12.
Preparative polyacrylamide gel electrophoresis was used to examine histone phosphorylation in synchronized Chinese hamster cells (line CHO). Results showed that histone f1 phosphorylation, absent in G1-arrested and early G1-traversing cells, commences 2 h before entry of traversing cells into the S phase. It is concluded that f1 phosphorylation is one of the earliest biochemical events associated with conversion of nonproliferating cells to proliferating cells occurring on old f1 before synthesis of new f1 during the S phase. Results also showed that f3 and a subfraction of f1 were rapidly phosphorylated only during the time when cells were crossing the G2/M boundary and traversing prophase. Since these phosphorylation events do not occur in G1, S, or G2 and are reduced greatly in metaphase, it is concluded that these two specific phosphorylation events are involved with condensation of interphase chromatin into mitotic chromosomes. This conclusion is supported by loss of prelabeled 32PO4 from those specific histone fractions during transition of metaphase cells into interphase G1 cells. A model of the relationship of histone phosphorylation to the cell cycle is presented which suggests involvement of f1 phosphorylation in chromatin structural changes associated with a continuous interphase "chromosome cycle" which culminates at mitosis with an f3 and f1 phosphorylation-mediated chromosome condensation.  相似文献   

13.
ELECTRON MICROSCOPIC STUDIES OF MITOSIS IN AMEBAE : I. Amoeba proteus   总被引:17,自引:17,他引:0       下载免费PDF全文
Individual organisms of Amoeba proteus have been fixed in buffered osmium tetroxide in either 0.9 per cent NaCl or 0.01 per cent CaCl2, sectioned, and studied in the electron microscope in interphase and in several stages of mitosis. The helices typical of interphase nuclei do not coexist with condensed chromatin and thus either represent a DNA configuration unique to interphase or are not DNA at all. The membranes of the complex nuclear envelope are present in all stages observed but are discontinuous in metaphase. The inner, thick, honeycomb layer of the nuclear envelope disappears during prophase, reappearing after telophase when nuclear reconstruction is in progress. Nucleoli decrease in size and number during prophase and re-form during telophase in association with the chromatin network. In the early reconstruction nucleus, the nucleolar material forms into thin, sheet-like configurations which are closely associated with small amounts of chromatin and are closely applied to the inner, partially formed layer of the nuclear envelope. It is proposed that nucleolar material is implicated in the formation of the inner layer of the envelope and that there is a configuration of nucleolar material peculiar to this time. The plasmalemma is partially denuded of its fringe-like material during division.  相似文献   

14.
E. B. Wagenaar 《Chromosoma》1969,26(4):410-426
Cytological studies on telophase and early prophase in roottip cells of several plant species (Allium cepa, 2n=16; four Crepis species, including Crepis capillaris, 2n=6; Callitriche hermaphroditica, 2n=6; Nigella arvensis, 2n=12; Secale cereale, 2n=14) revealed that chromosome ends are attached two by two forming chains of chromosomes (interphase associations). In these chains homologous chromosomes are presumably located adjacent to each other. In Crepis capillaris it was observed that the two nucleolar chromosomes form a separate ring one end attached to the ring of the four remaining chromosomes and the other end attached to the nucleolus. It is proposed that these end-to-end attachments have significance for chromosome pairing in meiosis. The adjacent location of homologous chromosomes in the interphase associations would facilitate rapid and regular synapsis.  相似文献   

15.
By means of immunofluorescence method, localization of DNA-topoisomerase IIα (Topo IIα) in interphase nuclei and chromosomes at different stages of mitosis was studied in situ under normal conditions and after treatment with condensing and decondensing solutions. In non-isolated mitotic M-HeLa cell chromosomes, Topo IIα was uniformly distributed along chromatids after fixation and permeabilization in situ. After treatment of cells with decondensing solutions (10 mM Tris; 0.1 mM CaCl2 in 10 mM Tris; 0.3 mM CaCl2 in 10 mM Tris; 15% DMEM; 75 mM KCl), Topo IIα was evenly distributed along chromatids in prophase, prometaphase and metaphase; its concentration was the highest in the pericentromere region. After treatment of cells with condensing solutions containing 0.7 mM, 1 mM, 2 mM or 3 mM CaCl2 in 10 mM Tris, Topo IIα was not detected in prophase, metaphase and anaphase. However, in late telophase anti-Topo IIα antibodies were found in reforming nuclei under identical conditions. After sequential treatment with condensing and decondensing solutions, the distribution patterns of Topo IIα in chromosomes were the same as after treatment with only decondensing solutions. In anaphase and telophase, Topo IIα was evenly distributed along chromatids, while in prophase, prometaphase and metaphase it was predominantly localized in the pericentromere region. After the treatment of cells with condensing solutions chromosome staining was not observed, apparently due to “masking” of binding sites for anti-Topo IIα antibodies. Homogenous distribution of Topo IIα along chromatids in non-isolated chromosomes was preserved after the treatment of cells with hypotonic solutions; however, under these conditions Topo IIα concentration was higher in centromeres.  相似文献   

16.
Dividing cells of Spirogyra sp. were examined with both the light and electron microscopes. By preprophase many of the typical transverse wall micro-tubules disappeared while others were seen in the thickened cytoplasmic strands. Microtubules appeared in the polar cytoplasm at prophase and by prometaphase they penetrated the nucleus. They were attached to chromosomes at metaphase and early anaphase, and formed a sheath surrounding the spindle during anaphase; they were seen in the interzonal strands and cytoplasmic strands at telophase. The interphase nucleolus, containing 2 distinct zones and chromatinlike material, fragmented at prophase; at metaphase and anaphase nucleolar material coated the chromosomes, obscuring them by late anaphase. The chromosomes condensed in the nucleoplasm at prophase, moving into the nucleolus at prometaphase. The nuclear envelope was finally disrupted at anaphase during spindle elongation; at telophase membrane profiles coated the reforming nuclei. During anaphase and early telophase the interzonal region contained vacuoles, a few micro-tubules, and sometimes eliminated n ucleolar material; most small organelles, including swollen endoplasmic reticulum and tubular membranes, were concentrated in the polar cytoplasm. Quantitative and qualitative cytological observations strongly suggest movement of intact wall rnicrotubules to the spindle at preprophase and then back again at telophase.  相似文献   

17.
ELECTRON MICROSCOPY OF MITOSIS IN A RADIOSENSITIVE GIANT AMOEBA   总被引:2,自引:2,他引:0       下载免费PDF全文
Various aspects of the ultrastructure of the dividing nuclei in the large radiosensitive amoeba Pelomyxa illinoisensis are demonstrated. Evidence of nuclear envelope breakdown is presented, and membrane fragments are traced throughout metaphase to envelope reconstruction in anaphase and telophase. Annuli in the nuclear envelope and its fragments are shown throughout mitosis. During metaphase and anaphase some 15 to 20 mitochondria are aligned at each end of the spindle, and are called polar mitochondria. The radioresistant amoebae Pelomyxa carolinensis and Amoeba proteus do not have polar mitochondria, and Pelomyxa illinoisensis is unique in this regard. The shape of the P. illinoisensis interphase nucleoli differs from that in the two radioresistant species, and certain aspects of nucleolar dissolution in the prophase vary. Helical coils in the interphase nucleoplasm are similar to those in the radioresistant amoebae. A "blister" phase in the flatly shaped telophase nuclei of P. illinoisensis is described which is interpreted to be the result of a rapid nuclear expansion leading to the formation of the normal spherical interphase nuclei.  相似文献   

18.
When vertebrate somatic cells are selectively irradiated in the nucleus during late prophase (<30 min before nuclear envelope breakdown) they progress normally through mitosis even if they contain broken chromosomes. However, if early prophase nuclei are similarly irradiated, chromosome condensation is reversed and the cells return to interphase. Thus, the G2 checkpoint that prevents entry into mitosis in response to nuclear damage ceases to function in late prophase. If one nucleus in a cell containing two early prophase nuclei is selectively irradiated, both return to interphase, and prophase cells that have been induced to returned to interphase retain a normal cytoplasmic microtubule complex. Thus, damage to an early prophase nucleus is converted into a signal that not only reverses the nuclear events of prophase, but this signal also enters the cytoplasm where it inhibits e.g., centrosome maturation and the formation of asters. Immunofluorescent analyses reveal that the irradiation-induced reversion of prophase is correlated with the dephosphorylation of histone H1, histone H3, and the MPM2 epitopes. Together, these data reveal that a checkpoint control exists in early but not late prophase in vertebrate cells that, when triggered, reverses the cell cycle by apparently downregulating existing cyclin-dependent kinase (CDK1) activity.  相似文献   

19.
Summary The number of dictyosomes found in one central cell section in antheridial filaments ofChara vulgaris increases proportionally to the cell length during interphase. The activity of Golgi apparatus was expressed by a number of Golgi vesicles surrounding a single dictyosome. These vesicles are most numerous during mitosis and cytokinesis,i.e., prior to and during cell plate formation. In the middle and late S phase the number of Golgi vesicles decreases by about 25%; subsequently, during the early and middle G2, it increases again. At the end of the G2 phase, Golgi vesicles are the scarcest.The increase in the number of Golgi vesicles during the G2 phase coincides with the period of intense cellular elongation, and, thus, it is probably related to the enhanced synthesis of cell wall components.Coated vesicles are most numerous in prophase, metaphase, and early telophase, and during interphase in both late S and G2 phase. It was found that the number of coated vesicles is proportional to the degree of condensation of nuclear chromatin.This work was supported by the Polish Academy of Sciences within the project 09.7.3.1.4.  相似文献   

20.
Details of mitosis in the chloromonadophycean alga Vacuolaria virescens Cienk. have been studied with the light microscope. The chromosomes are relatively large (up to μ in length at metaphase) and so mitotic stages are readily distinguishable. Chromosomes can be recognized in interphase nuclei as fine strands of chromatin. Contraction of these chromosomes marks the beginning of mitosis and continues progressively until the transition from metaphase to anaphase. Disintegration of nucleoli is complete by late prophase and nucleolar reformation begins in telophase. Some chromosomes exhibit less densely stained regions; centromeres are also present as indicated by their differential staining and by the behavior of chromosomes at metaphase and anaphase. At anaphase progeny chromosomes move apart parallel to the division axis of the nucleus. As anaphase progresses the chromosomes fuse at the polar surface of the progeny chromosome groups. This process continues in telophase and the chromosome groups become more spherical. By the end of telophase nucleolar reformation has begun and the chromosomes have relaxed to their interphase condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号