首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ubiquitin is a 76 amino acid protein with a remarkable degree of evolutionary conservation. Ubiquitin plays an essential role in a large number of eukaryotic cellular processes by targeting proteins for proteasome-mediated degradation. Most ubiquitin genes are found as head-to-tail polymers whose products are posttranslationally processed to ubiquitin monomers. We have characterized polyubuiquitin genes from the photosynthetic amoeboflagellate Chlorarachnion sp. CCMP 621 (also known as Bigelowiella natans) and found that they deviate from the canonical polyubiquitin structure in having an amino acid insertion at the junction between each monomer, suggesting that polyubiquitin processing in this organism is unique among eukaryotes. The gene structure indicates that processing likely cleaves monomers at the amino terminus of the insertion. We examined the phylogenetic distribution of the insertion by sequencing polyubiquitin genes from several other eukaryotic groups and found it to be confined to Cercozoa (including Chlorarachnion, Lotharella, Cercomonas, and Euglypha) and Foraminifera (including Reticulomyxa and Haynesina). This character strongly suggests that Cercozoa and Foraminifera are close relatives and form a new "supergroup" of eukaryotes.  相似文献   

2.
Reconstructing a global phylogeny of eukaryotes is an ongoing challenge of molecular phylogenetics. The availability of genomic data from a broad range of eukaryotic phyla helped in resolving the eukaryotic tree into a topology with a rather small number of large assemblages, but the relationships between these "supergroups" are yet to be confirmed. Rhizaria is the most recently recognized "supergroup," but, in spite of this important position within the tree of life, their representatives are still missing in global phylogenies of eukaryotes. Here, we report the first large-scale analysis of eukaryote phylogeny including data for 2 rhizarian species, the foraminiferan Reticulomyxa filosa and the chlorarachniophyte Bigelowiella natans. Our results confirm the monophyly of Rhizaria (Foraminifera + Cercozoa), with very high bootstrap supports in all analyses. The overall topology of our trees is in agreement with the current view of eukaryote phylogeny with basal division into "unikonts" (Opisthokonts and Ameobozoa) and "bikonts" (Plantae, alveolates, stramenopiles, and excavates). As expected, Rhizaria branch among bikonts; however, their phylogenetic position is uncertain. Depending on the data set and the type of analysis, Rhizaria branch as sister group to either stramenopiles or excavates. Overall, the relationships between the major groups of unicellular bikonts are poorly resolved, despite the use of 85 proteins and the largest taxonomic sampling for this part of the tree available to date. This may be due to an acceleration of evolutionary rates in some bikont phyla or be related to their rapid diversification in the early evolution of eukaryotes.  相似文献   

3.
The plasmodiophorids are a group of eukaryotic intracellular parasites that cause disease in a variety of economically significant crops. Plasmodiophorids have traditionally been considered fungi but have more recently been suggested to be members of the Cercozoa, a morphologically diverse group of amoeboid, flagellate, and amoeboflagellate protists. The recognition that Cercozoa constitute a monophyletic lineage has come from phylogenetic analyses of small subunit ribosomal RNA genes. Protein sequence data have suggested that the closest relatives of Cercozoa are the Foraminifera. To further test a cercozoan origin for the plasmodiophorids, we isolated actin genes from Plasmodiophora brassicae, Sorosphaera veronicae, and Spongospora subterranea, and polyubiquitin gene fragments from P. brassicae and S. subterranea. We also isolated actin genes from the chlorarachniophyte Lotharella globosa. In protein phylogenies of actin, the plasmodiophorid sequences consistently branch with Cercozoa and Foraminifera, and weakly branch as the sister group to the foraminiferans. The plasmodiophorid polyubiquitin sequences contain a single amino acid residue insertion at the functionally important processing point between ubiquitin monomers, the same place in which an otherwise unique insertion exists in the cercozoan and foraminiferan proteins. Taken together, these results indicate that plasmodiophorids are indeed related to Cercozoa and Foraminifera, although the relationships amongst these groups remain unresolved.  相似文献   

4.
A flagellate predator, Aurigamonas solis n. gen., n. sp., with numerous radiating axopodia-like appendages, has been isolated in culture from soils. Despite its heliozoan-like appearance, Aurigamonas is not a sit-and-wait predator but a mobile hunter and its stiff appendages are not microtubule-supported axopodia but elongate haptopodia, each supported by a cylindrical core of microfilaments and bearing at its capitate tip a single extrusome-like body (haptosome). Prey flagellates are trapped on the sticky tips of the haptopodia and a large funnel-shaped pseudopodium then emerges to engulf the prey or suck out part of it for internal digestion. Pseudopodial contact is accompanied by killing, possibly as a result of the injection of spicules by the predator. Cytoplasmic haptosomes appear to induce formation of a haptopodium on making contact with the plasma membrane. Propulsion of the organism along the substratum is effected by beating of a long trailing flagellum, the short and inconspicuous second flagellum lacks motility. Small subunit rDNA sequencing shows that Aurigamonas arose within the Cercozoa. Its closest relatives are Cercobodo agilis and several flagellates currently known only as environmental sequences. This conclusion is supported further by the presence of only a single amino acid insertion in the polyubiquitin sequence of Aurigamonas solis.  相似文献   

5.
底物蛋白的多聚泛素链修饰参与调节多种生命运动过程(包括蛋白质降解、自噬、DNA损伤修复、细胞周期、信号转导、基因表达、转录调节、炎症免疫等).去泛素化酶通过水解底物蛋白的单泛素和泛素链修饰,对泛素相关过程进行反向调节.人类基因组中约含90余种去泛素化酶,它们通过对自身酶活性和底物识别特异性的调节,实现了对细胞内复杂泛素过程的精密且层次性的调控.本文针对去泛素化酶对不同泛素链的识别选择性,综述目前已知泛素链水解酶的选择性和产生机制.  相似文献   

6.
Hoppenrath M  Leander BS 《Protist》2006,157(3):279-290
Ebria tripartita is a phagotrophic flagellate present in marine coastal plankton communities worldwide. This is one of two (possibly four) described extant species in the Ebridea, an enigmatic group of eukaryotes with an unclear phylogenetic position. Ebriids have never been cultured, are usually encountered in low abundance and have a peculiar combination of ultrastructural characters including a large nucleus with permanently condensed chromosomes and an internal skeleton composed of siliceous rods. Consequently, the taxonomic history of the group has been tumultuous and has included a variety of affiliations, such as silicoflagellates, dinoflagellates, 'radiolarians' and 'neomonads'. Today, the Ebridea is treated as a eukaryotic taxon incertae sedis because no morphological or molecular features have been recognized that definitively relate ebriids with any other eukaryotic lineage. We conducted phylogenetic analyses of small subunit rDNA sequences from two multi-specimen isolations of Ebria tripartita. The closest relatives to the sequences from Ebria tripartita are environmental sequences from a submarine caldera floor. This newly recognized Ebria clade was most closely related to sequences from described species of Cryothecomonas and Protaspis. These molecular phylogenetic relationships were consistent with current ultrastructural data from all three genera, leading to a robust placement of ebriids within the Cercozoa.  相似文献   

7.
Alpha and beta-tubulin genes from Chlorarachnion and an alpha-tubulin gene from Cercomonas have been characterised. We found the Cercomonas and Chlorarachnion alpha-tubulins to be closely related to one another, confirming the proposed relationship of these genera. In addition, the Chlorarachnion host and Cercomonas also appear to be more distantly related to Heterolobosea. Euglenozoa, chlorophytes. Heterokonts, and alveolates. Chlorarachnion was also found to have two distinctly different types of both alpha- and beta-tubulin. one type being highly-divergent. Chlorarachnion contains a secondary endosymbiont of green algal origin, raising the possibility that one type of Chlorarachnion tubulins comes from the host and the other from the endosymbiont. Probing pulsed field-separated chromosomes showed that the highly-divergent genes are encoded by the host genome, and neither alpha- nor beta-tubulin cDNAs were found to include 5' extensions that might serve as targeting peptides. It appears that Chlorarachnion has distinct and divergent tubulin paralogues that are all derived from the host lineage. One Chlorarachnion beta-tubulin was also found to be a pseudogene, which is still expressed but aberrantly processed. Numerous unspliced introns and deletions resulting from mis-splicing are contained in the mRNAs from this gene.  相似文献   

8.
Cavalier-Smith T  Chao EE 《Protist》2003,154(3-4):341-358
The protozoan phylum Cercozoa embraces numerous ancestrally biciliate zooflagellates, euglyphid and other filose testate amoebae, chlorarachnean algae, phytomyxean plant parasites (e.g. Plasmodiophora, Phagomyxa), the animal-parasitic Ascetosporea, and Gromia. We report 18S rRNA sequences of 27 culturable zooflagellates, many previously of unknown taxonomic position. Phylogenetic analysis shows that all belong to Cercozoa. We revise cercozoan classification in the light of our analysis and ultrastructure, adopting two subphyla: Filosa subphyl. nov. a clade comprising Monadofilosa and Reticulofilosa, ranked as superclasses, ancestrally having the same very rare base-pair substitution as all opisthokonts; and subphylum Endomyxa emend. comprising classes Phytomyxea (Plasmodiophorida, Phagomyxida), Ascetosporea (Haplosporidia, Paramyxida, Claustrosporida ord. nov.) and Gromiidea cl. nov., which did not. Monadofilosa comprise Sarcomonadea, zooflagellates with a propensity to glide on their posterior cilium and/or generate filopodia (e.g. Metopion;Cercomonas; Heteromitidae – Heteromita, Bodomorpha, Proleptomonas and Allantion) and two new classes: Imbricatea (with silica scales: Euglyphida; Thaumatomonadida, including Allas, Thaumatomastix) and Thecofilosea (Cryomonadida; Tectofilosida ord. nov. – non-scaly filose amoebae, e.g. Pseudodifflugia). Reticulofilosa comprise classes Chlorarachnea, Spongomonadea and Proteomyxidea (e.g. Massisteria, Gymnophrys, a Dimorpha-like protozoan). Cercozoa, now with nine classes and 17 orders (four new), will probably include many, possibly most, other filose and reticulose amoebae and zooflagellates not yet assigned to phyla.  相似文献   

9.
10.
Expression Enhancement of a Rice Polyubiquitin Gene Promoter   总被引:11,自引:0,他引:11  
An 808 bp promoter from a rice polyubiquitin gene, rubi3, has been isolated. The rubi3 gene contained an open reading frame of 1140 bp encoding a pentameric polyubiquitin arranged as five tandem, head-to-tail repeats of 76 aa. The 1140 bp 5′ UTR intron of the gene enhanced its promoter activity in transient expression assays by 20-fold. Translational fusion of the GUS reporter gene to the coding sequence of the ubiquitin monomer enhanced GUS enzyme activity in transient expression assays by 4.3-fold over the construct containing the original rubi3 promoter (including the 5′ UTR intron) construct. The enhancing effect residing in the ubiquitin monomer coding sequence has been narrowed down to the first 9 nt coding for the first three amino acid residues of the ubiquitin protein. Mutagenesis at the third nucleotide of this 9 nt sequence still maintains the enhancing effect, but leads to translation of the native GUS protein rather than a fusion protein. The resultant 5′ regulatory sequence, consisting of the rubi3 promoter, 5′ UTR exon and intron, and the mutated first 9 nt coding sequence, has an activity nearly 90-fold greater than the rubi3 promoter only (without the 5′ UTR intron), and 2.2-fold greater than the maize Ubi1 gene promoter (including its 5′ UTR intron). The newly created expression vector is expected to enhance transgene expression in monocot plants. Considering the high conservation of the polyubiquitin gene structure in higher plants, the observed enhancement in gene expression may apply to 5′ regulatory sequences of other plant polyubiquitin genes.  相似文献   

11.
Vampyrellids (Vampyrellida, Rhizaria) are a major group of predatory amoebae known primarily from freshwater and soil. Environmental sequence data indicate that there is also a considerable diversity of vampyrellids inhabiting marine ecosystems, but their phenotypic traits and ecology remain largely unexplored. We discovered algivorous vampyrellids of the filoflabellate morphotype in coastal habitats in Atlantic Canada, established cultures by single‐cell isolation, and characterised three strains using light microscopy, SSU rRNA gene sequencing, feeding experiments and growth experiments at various salinities. These strains exhibit orange, discoid trophozoites with ventral filopodia, moving granules (“membranosomes”), and rolling locomotion, similar to freshwater species previously assigned to Hyalodiscus Hertwig & Lesser, but here moved to Placopus Schulze (due to homonymy with Hyalodiscus Ehrenberg). SSU rRNA gene phylogenies place our strains in two distinct positions within “lineage B3” (here referred to as Placopodidae). Based on these morphological, habitat and molecular data, we describe two new species, Placopus melkoniani sp. nov. and Placopus pusillus sp. nov., both of which feed on chlorophyte flagellates (Tetraselmis, Pyramimonas) and the cryptophyte Chroomonas. They perforate the theca of Tetraselmis to extract the protoplast, and thereby represent the first vampyrellids known to degrade the biochemically exotic cell wall of the Chlorodendrales (Chlorophyta, Viridiplantae).  相似文献   

12.
Decelle J  Suzuki N  Mahé F  de Vargas C  Not F 《Protist》2012,163(3):435-450
Acantharia are ubiquitous and abundant rhizarian protists in the world ocean. The skeleton made of strontium sulphate and the fact that certain harbour microalgal endosymbionts make them key planktonic players for the ecology of marine ecosystems. Based on morphological criteria, the current taxonomy of Acantharia was established by W.T. Schewiakoff in 1926, since when no major revision has been undertaken. Here, we established the first comprehensive molecular phylogeny from single morphologically-identified acantharian cells, isolated from various oceans. Our phylogenetic analyses based on 78 18S rDNA and 107 partial 28S rDNA revealed the existence of 6 main clades, sub-divided into 13 sub-clades. The polyphyletic nature of acantharian families and genera demonstrates the need for revision of the current taxonomy. This molecular phylogeny, which highlights the taxonomic relevance of specific morphological criteria, such as the presence of a shell and the organisation of the central junction, provides a robust phylogenetic framework for future taxonomic emendation. Finally, mapping all the existing environmental sequences available to date from different marine ecosystems onto our reference phylogeny unveiled another 3 clades and improved the understanding of the biogeography and ecology of Acantharia.  相似文献   

13.
The largest biological surface on earth is formed by plant leaves. These leaf surfaces are colonized by a specialized suite of leaf‐inhabiting microorganisms, recently termed “phyllosphere microbiome”. Microbial prey, however, attract microbial predators. Protists in particular have been shown to structure bacterial communities on plant surfaces, but virtually nothing is known about the community composition of protists on leaves. Using newly designed specific primers targeting the 18S rDNA gene of Cercozoa, we investigated the species richness of this common protist group on leaves of four Brassicaceae species from two different locations in a cloning‐based approach. The generated sequences revealed a broad diversity of leaf‐associated Cercozoa, mostly bacterial feeders, but also including known plant pathogens and a taxon of potential endophytes that were recently described as algal predators in freshwater systems. This initial study shows that protists must be regarded as an integral part of the microbial diversity in the phyllosphere of plants.  相似文献   

14.
ABSTRACT. The amoebae and amoeboid protists form a large and diverse assemblage of eukaryotes characterized by various types of pseudopodia. For convenience, the traditional morphology‐based classification grouped them together in a macrotaxon named Sarcodina. Molecular phylogenies contributed to the dismantlement of this assemblage, placing the majority of sarcodinids into two new supergroups: Amoebozoa and Rhizaria. In this review, we describe the taxonomic composition of both supergroups and present their small subunit rDNA‐based phylogeny. We comment on the advantages and weaknesses of these phylogenies and emphasize the necessity of taxon‐rich multigene datasets to resolve phylogenetic relationships within Amoebozoa and Rhizaria. We show the importance of environmental sequencing as a way of increasing taxon sampling in these supergroups. Finally, we highlight the interest of Amoebozoa and Rhizaria for understanding eukaryotic evolution and suggest that resolving their phylogenies will be among the main challenges for future phylogenomic analyses.  相似文献   

15.
16.
17.
Howe AT  Bass D  Chao EE  Cavalier-Smith T 《Protist》2011,162(5):710-722
Glissomonadida is an important cercozoan order of predominantly biflagellate gliding bacterivores found largely in soil and freshwater. Their vast diversity is largely undescribed. We studied 23 mostly newly isolated strains by light microscopy and sequenced their 18S rDNA genes; nine represent new species. For two misidentified ATCC 'Heteromita triangularis' strains, we establish novel gliding genera and species: the sandonid Mollimonas lacrima, the only glissomonad forming anterior and posterior pseudopodia, and Dujardina stenomorpha, a strongly flattened member of the new family Dujardinidae. A new strain from Oxfordshire grassland soil is the first reliably identified isolate of the virtually uniflagellate, smooth-gliding glissomonad genus, AllantionSandon, 1924. Phylogenetic analysis and cytological features reveal Allantion to be a member of Allapsidae. Sandona limna and Bodomorpha prolixa from Lake Baikal and Sandona hexamutans from volcanic Costa Rican soil are described as new species. Fifteen glissomonad strains were from grassland beside Lake Baikal. We describe two as new species of Sandona (S. heptamutans and S. octamutans); the others included strains of Sandona and Allapsa species that have already been described; and three were new species of Sandona and Allapsa but these died before being described. We discuss the ecological and evolutionary significance of these new strains.  相似文献   

18.
We have compiled a database of functional traits for two widespread and ecologically important groups of protists, Cercozoa and Endomyxa (Rhizaria). The functional traits of microorganisms are crucially important for interpreting results from environmental sequencing surveys. Linking morphological and ecological traits to environmental factors is common practice in studies involving micro‐ and macroorganisms, but is rarely applied to protists. Our database provides functional and ecologically significant traits linked to morphology, nutrition, locomotion and habitats. We discuss how the use of functional traits may help to unveil underlying ecosystem processes. This database is intended as a common reference for the molecular ecology community and will boost the understanding of ecosystem functions, especially those driven by biological interactions.  相似文献   

19.
Cavalier-Smith T  Lewis R  Chao EE  Oates B  Bass D 《Protist》2008,159(4):591-620
Sainouron are soil zooflagellates of obscure taxonomy. We studied the ultrastructure of S. acronematica sp. n. and sequenced its extremely divergent 18S rDNA and that of Cholamonas cyrtodiopsidis (here grouped as new family Sainouridae) to clarify their phylogeny. Ultrastructurally similar, they weakly group together, deeply within Monadofilosa. Sainouron has three cytoplasmic microtubules; all organelles specifically link to them or the nucleus. Mature centrioles have fibrous rhizoplasts. The posterior centriole bearing the motile cilium (with cortical filaments) has a transitional hub-lattice; a dense spiral fibre links its thicker rhizoplast and triplets; its ciliary root has two microtubules: mt1, underlying the plasma membrane, initiates at the spiral fibre; mt2, laterally attached to mt1 and nucleus, initiates in the amorphous centrosomal region. The anterior younger cilium, an immotile stub with submembrane skeleton as in Cholamonas, lacks axoneme, microtubular root, rhizoplasts and spiral fibre, but becomes the posterior one every cell cycle. The nuclear envelope donates coated vesicles directly to the Golgi, which makes kinetocyst-type extrusomes, concentrated at the cell anterior for extrusion into phagosomes. Ciliary transition region proximal hub-lattices (postulated to contain centrin) and distal nonagonal fibres are cercozoan synapomorphies, found with slight structural variation in all flagellate Cercozoa, but not in outgroups.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号