首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The targeting of positional information to specific regions of the oocyte or early embryo is one of the key processes in establishing anterior-posterior and dorsal-ventral polarity. In many developmental systems, this is accomplished by localization of mRNAs. The germ line-specific Drosophila orb gene plays a critical role in defining both axes of the developing oocyte, and its mRNA is localized in a complex pattern during oogenesis. We have identified a 280-bp sequence from the orb 3' untranslated region capable of reproducing this complex localization pattern. Furthermore, we have found that multiple cis-acting elements appear to be required for proper targeting of orb mRNA.  相似文献   

2.
The orb gene encodes an RNA recognition motif (RRM)-type RNA-binding protein that is a member of the cytoplasmic polyadenylation element binding protein (CPEB) family of translational regulators. Early in oogenesis, orb is required for the formation and initial differentiation of the egg chamber, while later in oogenesis it functions in the determination of the dorsoventral (DV) and anteroposterior axes of egg and embryo. In the studies reported here, we have examined the role of the orb gene in the gurken (grk)-Drosophila epidermal growth factor receptor (DER) signaling pathway. During the previtellogenic stages of oogenesis, the grk-DER signaling pathway defines the posterior pole of the oocyte by specifying posterior follicle cell identity. This is accomplished through the localized expression of Grk at the very posterior of the oocyte. Later in oogenesis, the grk-DER pathway is used to establish the DV axis. Grk protein synthesized at the dorsal anterior corner of the oocyte signals dorsal fate to the overlying follicle cell epithelium. We show that orb functions in both the early and late grk-DER signaling pathways, and in each case is required for the localized expression of Grk protein. We have found that orb is also required to promote the synthesis of a key component of the DV polarity pathway, K(10). Finally, we present evidence that Orb protein expression during the mid- to late stages of oogenesis is, in turn, negatively regulated by K(10).  相似文献   

3.
Wong LC  Schedl P 《PloS one》2011,6(12):e28261
Translational regulation of localized mRNAs is essential for patterning and axes determination in many organisms. In the Drosophila ovary, the germline-specific Orb protein mediates the translational activation of a variety of mRNAs localized in the oocyte. One of the Orb target mRNAs is orb itself, and this autoregulatory activity ensures that Orb proteins specifically accumulate in the developing oocyte. Orb is an RNA-binding protein and is a member of the cytoplasmic polyadenylation element binding (CPEB) protein family. We report here that Cup forms a complex in vivo with Orb. We also show that cup negatively regulates orb and is required to block the precocious activation of the orb positive autoregulatory loop. In cup mutant ovaries, high levels of Orb accumulate in the nurse cells, leading to what appears to be a failure in oocyte specification as a number of oocyte markers inappropriately accumulate in nurse cells. In addition, while orb mRNA is mislocalized and destabilized, a longer poly(A) tail is maintained than in wild type ovaries. Analysis of Orb phosphoisoforms reveals that loss of cup leads to the accumulation of hyperphosphorylated Orb, suggesting that an important function of cup in orb-dependent mRNA localization pathways is to impede Orb activation.  相似文献   

4.
During oogenesis in Drosophila, mRNAs encoding determinants required for the polarization of egg and embryo become localized in the oocyte in a spatially restricted manner. The TGF-alpha like signaling molecule Gurken has a central role in the polarization of both body axes and the corresponding mRNA displays a unique localization pattern, accumulating initially at the posterior and later at the anterior-dorsal of the oocyte. Correct localization of gurken RNA requires a number of cis-acting sequence elements, a complex of trans-acting proteins, of which only several have been identified, and the motor proteins Dynein and Kinesin, traveling along polarized microtubules. Here we report that the cytoplasmic Dynein-light-chain (DDLC1) which is the cargo-binding subunit of the Dynein motor protein, directly bound with high specificity and affinity to a 230-nucleotide region within the 3'UTR of gurken, making it the first Drosophila mRNA-cargo to directly bind to the DLC. Although DDLC1 lacks known RNA-binding motifs, comparison to double-stranded RNA-binding proteins suggested structural resemblance. Phenotypic analysis of ddlc1 mutants supports a role for DDLC1 in gurken RNA localization and anchoring as well as in correct positioning of the oocyte nucleus.  相似文献   

5.
Localization of mRNA is an important way of generating early asymmetries in the developing embryo. In Drosophila, Staufen is intimately involved in the localization of maternally inherited mRNAs critical for cell fate determination in the embryo. We show that double-stranded RNA-binding Staufen proteins are present in the oocytes of a vertebrate, Xenopus, and are localized to the vegetal cytoplasm, a region where important mRNAs including VegT and Vg1 mRNA become localized. We identified two Staufen isoforms named XStau1 and XStau2, where XStau1 was found to be the principal Staufen protein in oocytes, eggs, and embryos, the levels of both proteins peaking during mid-oogenesis. In adults, Xenopus Staufens are principally expressed in ovary and testis. XStau1 was detectable throughout the oocyte cytoplasm by immunofluorescence and was concentrated in the vegetal cortical region from stage II onward. It showed partial codistribution with subcortical endoplasmic reticulum (ER), raising the possibility that Staufen may anchor mRNAs to specific ER-rich domains. We further showed that XStau proteins are transiently phosphorylated by the MAPK pathway during meiotic maturation, a period during which RNAs such as Vg1 RNA are released from their tight localization at the vegetal cortex. These findings provide evidence that Staufen proteins are involved in targeting and/or anchoring of maternal determinants to the vegetal cortex of the oocyte in Xenopus. The Xenopus oocyte should thus provide a valuable system to dissect the role of Staufen proteins in RNA localization and vertebrate development.  相似文献   

6.
7.
Subcellular localization of mRNAs within the Drosophila oocyte is an essential step in body patterning. Yps, a Drosophila Y-box protein, is a component of an ovarian ribonucleoprotein complex that also contains Exu, a protein that plays an essential role in mRNA localization. Y-box proteins are known translational regulators, suggesting that this complex might regulate translation as well as mRNA localization. Here we examine the role of the yps gene in these events. We show that yps interacts genetically with orb, a positive regulator of oskar mRNA localization and translation. The nature of the genetic interaction indicates that yps acts antagonistically to orb. We demonstrate that Orb protein is physically associated with both the Yps and Exu proteins, and that this interaction is mediated by RNA. We propose a model wherein Yps and Orb bind competitively to oskar mRNA with opposite effects on translation and RNA localization.  相似文献   

8.
9.
10.
RNA-binding proteins (RBP) influence RNA editing, localization, stability and translation and may contribute to oocyte developmental competence by regulating the stability and turnover of oogenetic mRNAs. The expression of Staufen 1 and 2 and ELAVL1, ELAVL2 RNA-binding proteins during cow early development was characterized. Cumulus-oocyte complexes were collected from slaughterhouse ovaries, matured, inseminated and subjected to embryo culture in vitro. Oocyte or preimplantation embryo pools were processed for RT-PCR and whole-mount immunofluorescence analysis of mRNA expression and protein distribution. STAU1 and STAU2 and ELAVL1 mRNAs and proteins were detected throughout cow preimplantation development from the germinal vesicle (GV) oocyte to the blastocyst stage. ELAVL2 mRNAs were detectable from the GV to the morula stage, whereas ELAVL2 protein was in all stages examined and localized to both cytoplasm and nuclei. The findings provide a foundation for investigating the role of RBPs during mammalian oocyte maturation and early embryogenesis.  相似文献   

11.
12.
The RRM-type RNA binding protein Orb plays a central role in the establishment of polarity in the Drosophila egg and embryo. In addition to its role in the formation and initial differentiation of the egg chamber, orb is required later in oogenesis for the determination of the dorsoventral (DV) and anteroposterior (AP) axes. In DV axis formation, Orb protein is required to localize and translate gurken mRNA at the dorsoanterior part of the oocyte. In AP axis formation, Orb is required for the translation of oskar mRNA. In each case, Orb protein is already localized at the appropriate sites within the oocyte before the arrival of the mRNAs encoding axis determinants. We present evidence that an autoregulatory mechanism is responsible for directing the on site accumulation of Orb protein in the Drosophila oocyte. This orb autoregulatory activity ensures the accumulation of high levels of Orb protein at sites in the oocyte that contain localized orb message.  相似文献   

13.
14.
15.
Translational regulation of maternal mRNAs in distinct temporal and spatial patterns underlies many key decisions in developing eggs and embryos. In Drosophila, Orb is responsible for mediating the translational activation of mRNAs localized within the developing oocyte. Orb is a germline-specific RNA binding protein and is one of the founding members of the CPEB family of translational regulators. Here we show that Orb associates with the Drosophila Fragile X Mental Retardation (dFMR1) protein as part of a ribonucleoprotein complex that controls the localized translation of mRNAs in developing egg chambers. One of the key orb regulatory targets is orb mRNA, and this autoregulatory activity is critical for ensuring that Orb protein is expressed at high levels in the oocyte. We show that dFMR1 functions as a negative regulator in the orb autoregulatory circuit, downregulating orb mRNA translation.  相似文献   

16.
Nuclear RNP complex assembly initiates cytoplasmic RNA localization   总被引:1,自引:0,他引:1  
Cytoplasmic localization of mRNAs is a widespread mechanism for generating cell polarity and can provide the basis for patterning during embryonic development. A prominent example of this is localization of maternal mRNAs in Xenopus oocytes, a process requiring recognition of essential RNA sequences by protein components of the localization machinery. However, it is not yet clear how and when such protein factors associate with localized RNAs to carry out RNA transport. To trace the RNA-protein interactions that mediate RNA localization, we analyzed RNP complexes from the nucleus and cytoplasm. We find that an early step in the localization pathway is recognition of localized RNAs by specific RNA-binding proteins in the nucleus. After transport into the cytoplasm, the RNP complex is remodeled and additional transport factors are recruited. These results suggest that cytoplasmic RNA localization initiates in the nucleus and that binding of specific RNA-binding proteins in the nucleus may act to target RNAs to their appropriate destinations in the cytoplasm.  相似文献   

17.
The Dmnk (Drosophila maternal nuclear kinase) gene, encoding a nuclear protein serine/threonine kinase, is expressed predominantly in the germline cells during embryogenesis, suggesting its possible role in the establishment of germ cells. We report here that Dmnk interacts physically with Drosophila RNA binding protein Orb, which plays crucial roles in the establishment of Drosophila oocyte by regulating the distribution and translation of several maternal mRNAs. Considering similar spatiotemporal expression pattern of Dmnk and orb during oogenesis and early embryogenesis, it is suggested that Dmnk plays a role in establishment of germ cells by interacting with Orb. Although there are two forms of Dmnk proteins, Dmnk-L (long) and Dmnk-S (short) via the developmentally regulated alternative splicing, Orb can associate with both forms of Dmnk proteins when expressed in culture cells. However, immunohistochemical analysis revealed that Dmnk-S, but not Dmnk-L, can affect the subcellular localization of Orb in a kinase activity-dependent manner, suggesting differential functions of Dmnk-S and Dmnk-L in the regulation of Orb.  相似文献   

18.
19.
20.
Cytoplasmic localization of mRNA molecules is a powerful mechanism for generating cell polarity. In vertebrates, one paradigm is localization of Vg1 RNA within the Xenopus oocyte, a process directed by recognition of a localization element within the Vg1 3' UTR. We show that specific base changes within the localization element abolish both localization in vivo and binding in vitro by a single protein, VgRBP60. VgRBP60 is homologous to a human hnRNP protein, hnRNP I, and combined immunolocalization and in situ hybridization demonstrate striking colocalization of hnRNP I and Vg1 RNA within the vegetal cytoplasm of the Xenopus oocyte. These results implicate a novel role in cytoplasmic RNA transport for this family of nuclear RNA-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号