首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus cereus MCM B-326, isolated from buffalo hide, produced an extracellular protease. Maximum protease production occurred (126.87+/-1.32 U ml(-1)) in starch soybean meal medium of pH 9.0, at 30 degrees C, under shake culture condition, with 2.8 x 10(8) cells ml(-1) as initial inoculum density, at 36 h. Ammonium sulphate precipitate of the enzyme was stable over a temperature range of 25-65 degrees C and pH 6-12, with maximum activity at 55 degrees C and pH 9.0. The enzyme required Ca(2+) ions for its production but not for activity and/or stability. The partially purified enzyme exhibited multiple proteases of molecular weight 45 kDa and 36 kDa. The enzyme could be effectively used to remove hair from buffalo hide indicating its potential in leather processing industry.  相似文献   

2.
An extracellular alkaline serine protease (called DHAP), produced by a Bacillus pumilus strain, demonstrates significant dehairing function. This protease is purified by hydrophobic interaction chromatography, ion exchange, and gel filtration. DHAP had a pI of 9.0 and a molecular weight of approximately 32,000 Dalton. It shows maximal activity at pH 10 and with a temperature of 55 degrees C; the enzyme activity can be completely inhibited by phenylmethylsulfonyl fluoride (PMSF) and diisopropyl fluorophosphates (DFP). The first 20 amino acid residues of the purified DHAP have been determined with a sequence of AQTVPYGIPQIKAPAVHAQG. Alignment of this sequence with other alkaline protease demonstrates its high homology with protease from another B. pumilus strain.  相似文献   

3.
An extracellular acid protease was purified 1420-fold from sulfur-starved protein-induced cultures of Neurospora crassa. The enzyme was homogeneous as determined by polyacrylamide electrophoresis. The purification procedure consisted of an ultrafiltration step, cation-exchange chromatography, and affinity chromatography on Sepharose-linked pepstatin. The enzyme is homologous to aspartyl proteases that are characterized by pepstatin inhibition and trypsinogen activation. It is extremely autolytic, especially under denaturing conditions. The protease is stable between pH 3 and 7, showing optimal activity near pH 4.0 for both trypsinogen activation and hydrolysis of bovine serum albumin. The molecular weight of the enzyme was 34,500 by gel electrophoresis and gel filtration, and 34,975 by amino acid analysis.  相似文献   

4.
利用盐析,离子交换,疏水层析及凝胶过滤的方法从雅致放射毛霉AS3.2778的发酵麸曲中分离纯化出一碱性蛋白酶,其纯化提高了22.7倍,酶活回收率16.1%,最终比酶活可达到6094u/mg。电泳分析发现,该蛋白酶是一单体蛋白,其分子量大约在32KDa。性质分析表明:该蛋白酶在60℃、pH8.5~10.5具有最大催化活性;在40℃以下,pH6.0~9.0的范围有很好的稳定性;1mM的PMSF可以完全抑制其活性,显示该蛋白酶属于丝氨酸蛋白酶家族。底物专一性的研究发现,该蛋白酶有相当广泛的肽键选择性,对绝大多数由疏水性氨基酸(尤其是亮氨酸)构成的肽键有很强的水解能力。  相似文献   

5.
An extracellular alkaline serine protease (called DHAP), produced by a Bacillus pumilus strain, demonstrates significant dehairing function. This protease is purified by hydrophobic interaction chromatography, ion exchange, and gel filtration. DHAP had a pI of 9.0 and a molecular weight of approximately 32,000 Dalton. It shows maximal activity at pH 10 and with a temperature of 55°C; the enzyme activity can be completely inhibited by phenylmethylsulfonyl fluoride (PMSF) and diisopropyl fluorophosphates (DFP). The first 20 amino acid residues of the purified DHAP have been determined with a sequence of AQTVPYGIPQIKAPAVHAQG. Alignment of this sequence with other alkaline protease demonstrates its high homology with protease from another B. pumilus strain. Received: 17 April 2002 / Accepted: 24 May 2002  相似文献   

6.
《Process Biochemistry》2007,42(5):791-797
An extracellular bleach stable protease from the fungus Aspergillus clavatus ES1, isolated from wastewater, was purified and characterized. The protease of ES1 strain was purified to homogeneity using acetone precipitation, Sephadex G-100 gel filtration and CM-Sepharose ion exchange chromatography, with a 7.5-fold increase in specific activity and 29% recovery. The molecular mass was estimated to be 32 kDa on SDS-PAGE. The optimum pH and temperature for the proteolytic activity were pH 8.5 and 50 °C, respectively. The enzyme was stable in the pH range of 7.0–9.0. The protease was activated by divalent cations such as Ca2+ and Mg2+.The alkaline protease showed extreme stability towards non-ionic surfactants (5% Tween 80 and 5% Triton X-100). In addition, the enzyme was relatively stable towards oxidizing agents, retaining more than 71 and 53% of its initial activity after 1 h incubation in the presence of 1 and 2% (w/v) sodium perborate, respectively.The N-terminal sequence of the first 15 amino acids of the purified alkaline protease of A. clavatus ES1 showed high similarity with other fungal alkaline proteases. The activity was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine-protease.  相似文献   

7.
An extracellular cold-active alkaline serine protease from Penicillium chrysogenum FS010 has been purified. The purification procedure involved: ammonium sulfate precipitation, DEAE ion-exchange chromatography and sephadex G-100 gel chromatography. SDS–PAGE of the purified enzyme indicated a molecular weight of 41,000 ± 1,000 Da. The protease is stable in a pH range of 7.0–9.0 and has a maximum activity at pH 9.0. Compared with other industrial proteases, the enzyme shows a high hydrolytic activities at lower temperatures and a high sensitivity at a temperature over 50°C. The isoelectric point of the enzyme is approximate to 6.0. Enzymatic activity is enhanced by the addition of divalent cations such as Mg2+ and Ca2+ and inhibited by addition of Cu2+and Co2+. PMSF and DFP are its specific inhibitors. The application of the cold-active alkaline protease is extremely extensive, and widely used in detergents, feed, food, leather and many other industries.  相似文献   

8.
Proteases have prospective financial and environment-friendly applications; hence attention is focused currently on the finding of new protease producing microorganism so as to meet the requirements of industry. A thermophilic bacterial strain producing extracellular protease activity was isolated from soil and identified as Bacillus cereus by analysis of 16S rRNA. Protease production by the microorganism was improved by studying the impact of the type of nitrogen and carbon source, fermentation period, growth temperature and initial pH of the culture medium in cultivation optimization experiments. The enzyme was purified to homogeneity in two step procedure involving Sephadex G-75 and Q-Sepharose chromatography. The molecular weight of purified enzyme was found to be 58 kDa by SDS-PAGE. Protease exhibited a pH and temperature optima of 7.5 and 60°, respectively. The enzyme was active in the pH range of 6.0–9.0 and stable up to 70°C. Histological analysis of protease treated goat and cow skin pelts showed complete removal of non leather forming structures such as hair shaft, hair follicles and glandular structures. The protease showed the stain removing property from blood stained cotton cloth and found to be compatible with six commercially available detergents. The protease could release peptides from natural proteins after digestion of coagulated egg albumin and blood clot.  相似文献   

9.
Acidolysin an extracellular protease produced by Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography with a recovery of 91%. The enzyme was a monomeric protein with a molecular weight of 44,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an acidic isoelectric point of 3.3. Acidolysin was very sensitive to metal-chelating agents and phosphoramidon and was unaffected by sulfhydryl reagents. It was shown to be a calcium- and zinc-containing protease. It exhibited optimal activity against Azocoll at pH 5 and 45 degrees C. It was stable at low pH and heat labile above 50 degrees C. It exhibited specificity toward peptide bonds formed by the amino group of hydrophobic amino acids (isoleucine, leucine, and phenylalanine) and its NH2-terminal amino acid sequence showed a high degree of similarity with that of Bacillus subtilis neutral metalloprotease A. Acidolysin is the first phosphoramidon-sensitive, acidic zinc metalloprotease reported.  相似文献   

10.
C Croux  V Paquet  G Goma    P Soucaille 《Applied microbiology》1990,56(12):3634-3642
Acidolysin an extracellular protease produced by Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography with a recovery of 91%. The enzyme was a monomeric protein with a molecular weight of 44,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an acidic isoelectric point of 3.3. Acidolysin was very sensitive to metal-chelating agents and phosphoramidon and was unaffected by sulfhydryl reagents. It was shown to be a calcium- and zinc-containing protease. It exhibited optimal activity against Azocoll at pH 5 and 45 degrees C. It was stable at low pH and heat labile above 50 degrees C. It exhibited specificity toward peptide bonds formed by the amino group of hydrophobic amino acids (isoleucine, leucine, and phenylalanine) and its NH2-terminal amino acid sequence showed a high degree of similarity with that of Bacillus subtilis neutral metalloprotease A. Acidolysin is the first phosphoramidon-sensitive, acidic zinc metalloprotease reported.  相似文献   

11.
A novel salt-tolerant protease produced by Aspergillus sp. FC-10 was purified to homogeneity through anion-exchange chromatography, preparative isoelectric-focusing electrophoresis, and gel filtration chromatography, with an overall recovery of 12.7%. This protease demonstrated an optimum pH range of 7.0-9.0 for activity, with a stable pH range of 5.0-9.0. The optimum process temperature at pH 7.0 was 65 degrees C. The enzyme has a molecular mass of 28 kDa and was deduced as a monomer with an isoelectric point of 3.75. Enzyme activity was strongly inhibited by 5 mM of HgCl(2) and FeCl(3), and significantly inhibited by 5 mM of CuSO(4), FeSO(4), and MnCl(2). The activity of this purified protease was inhibited by Na(2).EDTA; however, leupeptin, pepstatin A, PMSF, and E-64 did not affect the activity. Based on the N-terminal amino acid sequence and amino acid composition, this purified protease should be classified as a member of the deuterolysin family.  相似文献   

12.
The extremely thermophilic anaerobic archaeon strain, HJ21, was isolated from a deep-sea hydrothermal vent, could produce hyperthermophilic alpha-amylase, and later was identified as Thermococcus from morphological, biochemical, and physiological characteristics and the 16S ribosomal RNA gene sequence. The extracellular thermostable alpha-amylase produced by strain HJ21 exhibited maximal activity at pH 5.0. The enzyme was stable in a broad pH range from pH 5.0 to 9.0. The optimal temperature of alpha-amylase was observed at 95 degrees C. The half-life of the enzyme was 5 h at 90 degrees C. Over 40% and 30% of the enzyme activity remained after incubation at 100 degrees C for 2 and 3 h, respectively. The enzyme did not require Ca(2+) for thermostability. This alpha-amylase gene was cloned, and its nucleotide sequence displayed an open reading frame of 1,374 bp, which encodes a protein of 457 amino acids. Analysis of the deduced amino acid sequence revealed that four homologous regions common in amylases were conserved in the HJ21 alpha-amylase. The molecular weight of the mature enzyme was calculated to be 51.4 kDa, which correlated well with the size of the purified enzyme as shown by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

13.
An extracellular protease was produced by Arthrobacter ramosus isolated from the alkaline lake of Lonar, Buldhana District of Maharashtra, India when grown on a synthetic medium of pH 10 containing casein. The optimum conditions for production were 3.0% initial casein concentration, 2% inoculum of 1 × 108 cells/ml, pH 9.0, temperature 30 °C and shaken culture conditions. The protease was purified by ammonium sulphate precipitation followed by Sephadex G-100 chromatography. Two proteases viz. Arthro I and Arthro II, having molecular weights 21 and 11.4 kDa respectively were isolated. The Arthro II fraction had K m 395 g/ml and V max 10.55 g/min for azocasein. The maximum activity of enzyme was at 55 °C and pH 8. It was thermostable (up to 80 °C), alkali stable (pH 12) and stable in commercial detergent. The enzyme may contain a thiol group at the active site.  相似文献   

14.
Enzymes I and II, which have a high soymilk-clotting activity, produced from K-295G-7 were purified by chromatographies on Sephadex G-100, CM-cellulose, hydroxylapatite, and 2nd Sephadex G-100.

The two purified enzymes were found to be homogeneous by polyacrylamide gel elec-trophoresis (PAGE) at pH 4.3. The molecular weights of enzymes I and II were 28,000 and 29,500 by SDS-PAGE, and their isoelectric points were 9.22 and 9.45, respectively. Enzymes I and II coagulated soymilk optimally at 65°C and were stable up to 45°C. Both enzymes were most active at pH 5.8, for soymilk coagulation between pH 5.8 to 6.7, and were stable with about 50 ~ 100% of the original activity from pH 5 to 10.

Each of the purified enzymes was a serine protease with an optimum pH of 9.0 for soy protein isolate (SPI) and casein digestions, because these enzymes were inhibited completely by diisopropylfluoro-phosphate (DFP).

The soymilk-clotting activity to proteolytic activity ratio of the enzyme II was 3 times higher than that of enzyme I. Enzymes I and II were more sensitive to the calcium ion concentration in soymilk than bromelain is.  相似文献   

15.
Bacillus stearothermophilus MK232, which produced a highly thermostable neutral protease, was isolated from a natural environment. By several steps of mutagenesis, a hyper-producing mutant strain, YG185, was obtained. The enzyme productivity was twice as much as that of the original strain. This extracellular neutral protease was purified and crystallized. The molecular weight of the enzyme was 34,000 by SDS-polyacrylamide gel electrophoresis and gel filtration. The optimum pH and temperature for the enzyme activity were 7.5 and 70°C, respectively, and the enzyme was stable at pH 5–10 and below 70°C. The thermostability and specific activity of the new protease are around 10% and 40% higher than those of thermolysin (the neutral protease from Bacillus thermoproteolyticus), respectively. The enzyme was inactivated by EDTA, but not by phenylmethylsulfonyl fluoride. These results indicate that the enzyme is a highly thermostable neutral-(metallo)protease.  相似文献   

16.
球形芽孢杆菌能够合成具杀蚊活性的蛋白晶体,该晶体在蚊中肠碱性条件下降解产生毒性,尽管球形芽孢杆菌蛋白酶与杀蚊毒素的降解无关,但它在球形芽孢杆菌杀蚊制剂的产生中有重要意义。同时球形芽孢杆菌产生的碱性蛋白酶具有潜在的医疗价值。 我们以本实验室分离的高效杀蚊菌C_3—41菌株为材料,研究了球形芽孢杆菌蛋白酶的产生特性及其理化性质,在国内尚属首次报道。  相似文献   

17.
An alkaline protease was isolated from culture filtrate of B. subtilis NCIM 2713 by ammonium sulphate precipitation and was purified by gel filtration. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 8.0 and temperature 70 degrees C. The purified protease had molecular weight 20 kDa, Isoelectric point 5.2 and km 2.5 mg ml(-1). The enzyme was stable over the pH range 6.5-9.0 at 37 degrees C for 3 hr. During chromatographic separation this protease was found to be susceptible to autolytic degradation in the absence of Ca2+. Ca2+ was not only required for the enzyme activity but also for the stability of the enzyme above 50 degrees C. About 62% activity was retained after 60 min at pH 8.0 and 55 degrees C. DFP and PMSF completely inhibited the activity of this enzyme, while in the presence of EDTA only 33% activity remained. However, it was not affected either by sulfhydryl reagent, or by divalent metal cations, except SDS and Hg2+. The results indicated that this is a serine protease.  相似文献   

18.
An extracellular bleach stable protease producing strain was isolated from marine water sample and identified as Bacillus mojavensis A21 on the basis of the 16S rRNA gene sequencing and biochemical properties. The A21 alkaline protease was purified from the culture supernatant to homogeneity using acetone precipitation, Sephadex G-75 gel filtration and CM-Sepharose ion exchange chromatography, with a 6.43-fold increase in specific activity and 16.56% recovery. The molecular weight of the purified enzyme was estimated to be 20 kDa by SDS-PAGE and gel filtration. The enzyme was highly active over a wide range of pH from 7.0 to 13.0, with an optimum at pH 8.5. The relative activities at pH 11.0 and 12.0 were about 80 and 71.7% of that obtained at pH 8.5. The enzyme was extremely stable in the pH range of 7.0–12.0. It exhibited maximal activity at 60 °C. The thermostability of the enzyme was significantly increased by the addition of CaCl2. The activity of the enzyme was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease.The N-terminal amino acid sequence of the first 20 amino acids of the purified protease was DINGGGATLPQKLYQTSGVL. B. mojavensis A21 protease showed low homology with bacterial peptidases, suggesting that the enzyme is a new protease.The alkaline protease showed high stability towards anionic (0.1% SDS) and non-ionic (1 and 5% Tween 80 and 1% Triton X-100) surfactants. In addition, the enzyme was relatively stable towards oxidizing agents, retaining more than 79 and 70% of its initial activity after 1 h incubation in the presence of 1% H2O2 and 0.1% sodium perborate, respectively. The enzyme showed excellent stability with a wide range of commercial solid and liquid detergents at 30 and 40 °C. Considering its promising properties, B. mojavensis A21 may find potential application in laundry detergents.  相似文献   

19.
An isolate of Streptomyces tendae produced a extracellular protease which was purified to apparent homogeneity giving a single band on SDS-PAGE with a molecular mass of 21 kDa. Optimum activity was at 70 degrees C and pH 6. It was stable at 55 degrees C for 30 min and between pH 4 and 9. It was resistant to neutral detergents and organic solvents such as Triton X-100, Tween 80, methanol, ethanol, acetone, and 2-propanol at 5% (v/v). The enzyme was completely inhibited by 5 mM PMSF, indicating it to be a serine protease. N-terminal amino acid sequence did not show any homology with other known proteolytic enzymes. The protease may therefore be a novel neutral serine protease, which is stable at high temperature and over a broad range of pH.  相似文献   

20.
A strain of Serratia, isolated from an intestinal canal of a silkworm, produced a large quantity of protease. The enzyme was extracellular and was named Serratiopeptidase, tentatively. Protease production of this strain was over 3 times as much as that of Serratia marcescens which was known as a protease-producing organism. The highly purified enzyme was prepared from the culture supernatant through ammonium sulfate precipitation, acetone fractionation, DEAE-cellulose column chromatography and gel filtration on Sephadex G-75.

The purified enzyme moved homogeneously with a sedimentation constant, s20,w of 3.8 S in ultracentrifugation and the molecular weight was determined to be 6.0 × 104 by the Archibald method. Determination of the ultraviolet absorption spectrum indicated the E1%280 mμ,1 cm was 13.0. Neither carbohydrate nor sulfur-containing amino acid was detected in the purified enzyme preparation. The enzyme showed maximal activity at pH 9.0 and at 40°C, and was stable under lower temperatures over the pH range from 5 to 10, whereas it was unstable at 37°C in alkaline conditions. The enzyme was completely inactivated by heating at 55°C for 15 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号