首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Theory on the evolution of niche width argues that resource heterogeneity selects for niche breadth. For parasites, this theory predicts that parasite populations will evolve, or maintain, broader host ranges when selected in genetically diverse host populations relative to homogeneous host populations. To test this prediction, we selected the bacterial parasite Serratia marcescens to kill Caenorhabditis elegans in populations that were genetically heterogeneous (50% mix of two experimental genotypes) or homogeneous (100% of either genotype). After 20 rounds of selection, we compared the host range of selected parasites by measuring parasite fitness (i.e. virulence, the selected fitness trait) on the two focal host genotypes and on a novel host genotype. As predicted, heterogeneous host populations selected for parasites with a broader host range: these parasite populations gained or maintained virulence on all host genotypes. This result contrasted with selection in homogeneous populations of one host genotype. Here, host range contracted, with parasite populations gaining virulence on the focal host genotype and losing virulence on the novel host genotype. This pattern was not, however, repeated with selection in homogeneous populations of the second host genotype: these parasite populations did not gain virulence on the focal host genotype, nor did they lose virulence on the novel host genotype. Our results indicate that host heterogeneity can maintain broader host ranges in parasite populations. Individual host genotypes, however, vary in the degree to which they select for specialization in parasite populations.  相似文献   

2.
Within‐host competition is predicted to drive the evolution of virulence in parasites, but the precise outcomes of such interactions are often unpredictable due to many factors including the biology of the host and the parasite, stochastic events and co‐evolutionary interactions. Here, we use a serial passage experiment (SPE) with three strains of a heterothallic fungal parasite (Ascosphaera apis) of the Honey bee (Apis mellifera) to assess how evolving under increasing competitive pressure affects parasite virulence and fitness evolution. The results show an increase in virulence after successive generations of selection and consequently faster production of spores. This faster sporulation, however, did not translate into more spores being produced during this longer window of sporulation; rather, it appeared to induce a loss of fitness in terms of total spore production. There was no evidence to suggest that a greater diversity of competing strains was a driver of this increased virulence and subsequent fitness cost, but rather that strain‐specific competitive interactions influenced the evolutionary outcomes of mixed infections. It is possible that the parasite may have evolved to avoid competition with multiple strains because of its heterothallic mode of reproduction, which highlights the importance of understanding parasite biology when predicting disease dynamics.  相似文献   

3.
Despite the fact that most host populations are infected by a community of different parasite species, the majority of empirical studies have focused on the interaction between the host and a single parasite species. Here, we explore the hypothesis that host population dynamics are affected both by single parasite species and by the whole parasite community. We monitored population density and breeding productivity of two populations of willow ptarmigan ( Lagopus lagopus ) in northern Norway for 8 and 11 years, respectively, and sampled eukaryotic endoparasites. We found that increasing abundances of the cestode Hymenolepis microps was associated with increased breeding mortality and reduced annual growth rate of the host population in both areas, and reduced host body mass and body condition in the area where such data were available. In one of the areas, the abundance of the nematode Trichostrongylus tenuis was associated with reductions in host body mass, body condition and breeding mortality and the filaroid nematode Splendidofilaria papillocerca was negatively related to host population growth rates. The parasite community was also negatively related to host fitness parameters, suggesting an additional community effect on host body mass and breeding mortality, although none of the parasites had a significant impact on their own. The prevalence of parasites with very different taxonomical origins tended to covary within years, suggesting that variability in the parasite community was not random, but governed by changes in host susceptibility or environmental conditions that affected exposure to parasites in general. Other variables including climate, plant production and rodent densities were not associated with the recorded demographic changes in the host population.  相似文献   

4.
In endemic areas with high transmission intensities, malaria infections are very often composed of multiple genetically distinct strains of malaria parasites. It has been hypothesised that this leads to intra-host competition, in which parasite strains compete for resources such as space and nutrients. This competition may have repercussions for the host, the parasite, and the vector in terms of disease severity, vector fitness, and parasite transmission potential and fitness. It has also been argued that within-host competition could lead to selection for more virulent parasites. Here we use the rodent malaria parasite Plasmodium yoelii to assess the consequences of mixed strain infections on disease severity and parasite fitness. Three isogenic strains with dramatically different growth rates (and hence virulence) were maintained in mice in single infections or in mixed strain infections with a genetically distinct strain. We compared the virulence (defined as harm to the mammalian host) of mixed strain infections with that of single infections, and assessed whether competition impacted on parasite fitness, assessed by transmission potential. We found that mixed infections were associated with a higher degree of disease severity and a prolonged infection time. In the mixed infections, the strain with the slower growth rate was often responsible for the competitive exclusion of the faster growing strain, presumably through host immune-mediated mechanisms. Importantly, and in contrast to previous work conducted with Plasmodium chabaudi, we found no correlation between parasite virulence and transmission potential to mosquitoes, suggesting that within-host competition would not drive the evolution of parasite virulence in P. yoelii.  相似文献   

5.
According to current thinking, a parasite's transmission mode will be a major determinant of virulence, defined as the harm induced by parasites to their hosts. With horizontal transmission, virulence will increase as a byproduct of a trade-off between fitness gained through increased among-host transmission (infectivity) and fitness lost through increased virulence. With vertical transmission, virulence will decrease because a parasite's reproductive potential will be maximized only by decreasing harm to the host, allowing parasite transmission to more host offspring. To test both predictions, we transmitted barley stripe mosaic virus (BSMV) horizontally and then vertically in its host, barley (Hordeum vulgare). After four generations of horizontal transmission, we observed a nearly twofold increase in horizontal infectivity and nearly tripled virulence. After three generations of subsequent vertical transmission, we observed a modest (16%) increase in vertical transmissibility and a large (40%) reduction in virulence. Increased horizontal transmission is often due to increased pathogen replication which, in turn, causes increased virulence. However, we found no correlation between within-host virus concentration and virulence, indicating that the observed changes in virulence were not due to changes in viral titer. Finally, horizontally transmitted BSMV had reduced vertical transmission and vertically transmitted BSMV had reduced horizontal infectivity. These two observations suggest that, in nature, in different host populations with varying opportunities for horizontal and vertical transmission, different viral strains may be favored.  相似文献   

6.
Although there is little doubt that hosts evolve to reduce parasite damage, little is known about the evolutionary time scale on which host populations may adapt under natural conditions. Here we study the effects of selection by the microsporidian parasite Octosporea bayeri on populations of Daphnia magna. In a field study, we infected replicated populations of D. magna with the parasite, leaving control populations uninfected. After two summer seasons of experimental evolution (about 15 generations), the genetic composition of infected host populations differed significantly from the control populations. Experiments revealed that hosts from the populations that had evolved with the parasite had lower mortality on exposure to parasite spores and a higher competitive ability than hosts that had evolved without the parasite. In contrast, the susceptibility of the two treatment groups to another parasite, the bacterium Pasteuria ramosa, which was not present during experimental evolution of the populations, did not differ. Fitness assays in the absence of parasites revealed a higher fitness for the control populations, but only under low population density with high resource availability. Overall, our results show that, under natural conditions, Daphnia populations are able to adapt rapidly to the prevailing conditions and that this evolutionary change is specific to the environment.  相似文献   

7.
Evolution of virulence in a heterogeneous host population   总被引:1,自引:0,他引:1  
Abstract.— There is a large body of theoretical studies that investigate factors that affect the evolution of virulence, that is parasite-induced host mortality. In these studies the host population is assumed to be genetically homogeneous. However, many parasites have a broad range of host types they infect, and trade-offs between the parasite virulence in different host types may exist. The aim of this paper is to study the effect of host heterogeneity on the evolution of parasite virulence. By analyzing a simple model that describes the replication of different parasite strains in a population of two different host types, we determine the optimal level of virulence in both host types and find the conditions under which strains that specialize in one host type dominate the parasite population. Furthermore, we show that intrahost evolution of the parasite during an infection may lead to stable polymorphisms and could introduce evolutionary branching in the parasite population.  相似文献   

8.
Heterogeneity in host susceptibility and transmissibility to parasite attack allows a lower transmission rate to sustain an epidemic than is required in homogeneous host populations. However, this heterogeneity can leave some hosts with little susceptibility to disease, and at high transmission rates, epidemic size can be smaller than for diseases where the host population is homogeneous. In a heterogeneous host population, we model natural selection in a parasite population where host heterogeneity is exploited by different strains to varying degrees. This partitioning of the host population allows coexistence of competing parasite strains, with the heterogeneity-exploiting strains infecting the more susceptible hosts, in the absence of physiological tradeoffs and spatial heterogeneity, and even for markedly different transmission rates. In our model, intermediate-strategy parasites were selected against: should coexistence occur, an equilibrium is reached where strains occupied only the extreme ends of trait space, under appropriate conditions selecting for lower R0.  相似文献   

9.
While the host immune system is often considered the most important physiological mechanism against parasites, precontact mechanisms determining exposure to parasites may also affect infection dynamics. For instance, chemical cues released by hosts can attract parasite transmission stages. We used the freshwater snail Lymnaea stagnalis and its trematode parasite Echinoparyphium aconiatum to examine the role of host chemical attractiveness, physiological condition, and immune function in determining its susceptibility to infection. We assessed host attractiveness through parasite chemo‐orientation behavior; physiological condition through host body size, food consumption, and respiration rate; and immune function through two immune parameters (phenoloxidase‐like and antibacterial activity of hemolymph) at an individual level. We found that, although snails showed high variation in chemical attractiveness to E. aconiatum cercariae, this did not determine their overall susceptibility to infection. This was because large body size increased attractiveness, but also increased metabolic activity that reduced overall susceptibility. High metabolic rate indicates fast physiological processes, including immune activity. The examined immune traits, however, showed no association with susceptibility to infection. Our results indicate that postcontact mechanisms were more likely to determine snail susceptibility to infection than variation in attractiveness to parasites. These may include localized immune responses in the target tissue of the parasite. The lack of a relationship between food consumption and attractiveness to parasites contradicts earlier findings that show food deprivation reducing snail attractiveness. This suggests that, although variation in resource level over space and time can alter infection dynamics, variation in chemical attractiveness may not contribute to parasite‐induced fitness variation within populations when individuals experience similar environmental conditions.  相似文献   

10.
The costs and benefits of parasite virulence are analysed in an evolutionarily stable strategy (ESS) model. Increased host mortality caused by disease (virulence) reduces a parasite's fitness by damaging its food supply. The fitness costs of high virulence may be offset by the benefits of increased transmission or ability to withstand the host's defences. It has been suggested that multiple infections lead to higher virulence because of competition among parasite strains within a host. A quantitative prediction is given for the ESS virulence rate as a function of the coefficient of relatedness among co-infecting strains. The prediction depends on the quantitative relation between the costs of virulence and the benefits of transmission or avoidance of host defences. The particular mechanisms by which parasites can increase their transmission or avoid host defences also have a key role in the evolution of virulence when there are multiple infections.  相似文献   

11.
Understanding host-parasite coevolution requires multigenerational studies in which changes in both parasite infectivity and host susceptibility are monitored. We conducted a coevolution experiment that examined six generations of interaction between a freshwater snail (Potamopyrgus antipodarum) and one of its common parasites (the sterilizing trematode, Microphallus sp.). In one treatment (recycled), the parasite was reintroduced into the same population of host snails. In the second treatment (lagged), the host snails received parasites from the recycled treatment, but the addition of these parasites did not begin until the second generation. Hence any parasite-mediated genetic changes of the host in the lagged treatment were expected to be one generation behind those in the recycled treatment. The lagged treatment thus allowed us to test for time lags in parasite adaptation, as predicted by the Red Queen model of host-parasite coevolution. Finally, in the third treatment (control), parasites were not added. The results showed that parasites from the recycled treatment were significantly more infective to snails from the lagged treatment than from the recycled treatment. In addition, the hosts from the recycled treatment diverged from the control hosts with regard to their susceptibility to parasites collected from the field. Taken together, the results are consistent with time lagged, frequency-dependent selection and rapid coevolution between hosts and parasites.  相似文献   

12.
A potential consequence of host-parasite coevolution in spatially structured populations is parasite local adaptation: local parasites perform better than foreign parasites on their local host populations. It has been suggested that the generally shorter generation times of parasites compared with their hosts contributes to parasites, rather than hosts, being locally adapted. We tested the hypothesis that relative generation times of hosts and parasites affect local adaptation of hosts and parasites, using the bacterium Pseudomonas fluorescens and a lytic phage as host and parasite, respectively. Generation times were not directly manipulated, but instead one of the coevolving partners was regularly removed and replaced with a population from an earlier time point. Thus, one partner underwent more generations than the other. Manipulations were carried out at both early and later periods of coevolutionary interactions. At early stages of coevolution, host and parasites that underwent relatively more generations displayed higher levels of resistance and infectivity, respectively. However, the relative number of generations that bacteria and phages underwent did not change the level of local adaptation relative to control populations. This is likely because generalist hosts and parasites are favoured during early stages of coevolution, preventing local adaptation. By contrast, at later stages manipulations had no effect on either average levels of resistance or infectivity, or alter the level of local adaptation relative to the controls, possibly because traits other than resistance and infectivity were under strong selection. Taken together, these data suggest that the relative generation times of hosts and parasites may not be an important determinant of local adaptation in this system.  相似文献   

13.
Mosquito mortality and the evolution of malaria virulence   总被引:1,自引:0,他引:1  
Abstract Several laboratory studies of malaria parasites (Plasmodium sp.) and some field observations suggest that parasite virulence, defined as the harm a parasite causes to its vertebrate host, is positively correlated with transmission. Given this advantage, what limits the continual evolution of higher parasite virulence? One possibility is that while more virulent strains are more infectious, they are also more lethal to mosquitoes. In this study, we tested whether the virulence of the rodent malaria parasite P. chabaudi in the laboratory mouse was correlated with the fitness of mosquitoes it subsequently infected. Mice were infected with one of seven genetically distinct clones of P. chabaudi that differ in virulence. Weight loss and anemia in infected mice were monitored for 16–17 days before Anopheles stephensi mosquitoes were allowed to take a blood meal from them. Infection virulence in mice was positively correlated with transmission to mosquitoes (infection rate) and weakly associated with parasite burden (number of oocysts). Mosquito survival fell with increasing oocyst burden, but there was no overall statistically significant relationship between virulence in mice and mosquito mortality. Thus, there was no evidence that more virulent strains are more lethal to mosquitoes. Both vector survival and fecundity depended on parasite clone, and contrary to expectations, mosquitoes fed on infections more virulent to mice were more fecund. The strong parasite genetic effects associated with both fecundity and survival suggests that vector fitness could be an important selective agent shaping malaria population genetics and the evolution of phenotypes such as virulence in the vector.  相似文献   

14.
The interaction between birds and haemosporidia blood parasites is a well‐used system in the study of parasite biology. However, where, when and how parasites are transmitted is often unclear and defining parasite transmission dynamics is essential because of how they influence parasite‐mediated costs to the host. In this study, we used cross‐sectional and longitudinal data taken from a collared flycatcher Ficedula albicollis population to investigate the temporal dynamics of haemosporidia parasite infection and parasite‐mediated costs to host fitness. We investigated host–parasite interactions starting at the nestling stage of the bird's life‐cycle and then followed their progress over three breeding attempts to quantify their fitness – measured as the number of offspring they produced that recruited back into the breeding population. We found that the majority of haemosporidia blood parasite infections occurred within the first year of life and that the most common parasite lineages that infected the breeding population also infected juvenile birds in the natal environment. Moreover, our findings suggest that collared flycatcher nestlings in poorer condition could be at a higher risk of haemosporidia blood parasite infection. In this study, only female and not male bird fitness was adversely affected by parasite infection and the cost of infection on female fitness depended on the timing of transmission. In conclusion, our study indicates that in collared flycatchers, early‐life is potentially important for many of the interactions with haemosporidia parasite lineages, and evidence of parasite‐mediated costs to fitness suggest that these parasites may have influenced the host population dynamics.  相似文献   

15.
The ubiquity of outcrossing in plants and animals is difficult to explain given its costs relative to self‐fertilization. Despite these costs, exposure to changing environmental conditions can temporarily favor outcrossing over selfing. Therefore, recurring episodes of environmental change are predicted to favor the maintenance of outcrossing. Studies of host–parasite coevolution have provided strong support for this hypothesis. However, it is unclear whether multiple exposures to novel parasite genotypes in the absence of coevolution are sufficient to favor outcrossing. Using the nematode Caenorhabditis elegans and the bacterial parasite Serratia marcescens, we studied host responses to parasite turnover. We passaged several replicates of a host population that was well‐adapted to the S. marcescens strain Sm2170 with either Sm2170 or one of three novel S. marcescens strains, each derived from Sm2170, for 18 generations. We found that hosts exposed to novel parasites maintained higher outcrossing rates than hosts exposed to Sm2170. Nonetheless, host outcrossing rates declined over time against all but the most virulent novel parasite strain. Hosts exposed to the most virulent novel strain exhibited increased outcrossing rates for approximately 12 generations, but did not maintain elevated levels of outcrossing throughout the experiment. Thus, parasite turnover can transiently increase host outcrossing. These results suggest that recurring episodes of parasite turnover have the potential to favor the maintenance of host outcrossing. However, such maintenance may require frequent exposure to novel virulent parasites, rapid rates of parasite turnover, and substantial host gene flow.  相似文献   

16.
Many theoretical models of host-parasite coevolution assume that variation in host resistance to parasite infection is, at least partially, genetically determined and specific to the strain of infecting parasite. However, very few experimental studies have been conducted to test this assumption in animal-parasite systems. Biomphalaria glabrata snails serve as the intermediate hosts of Schistosoma mansoni. Although some snails are resistant to infection, there is no evidence of fixation of resistance in field populations. Two possible explanations for this are high fitness costs associated with resistance and a dynamic coevolution between parasite and host, perhaps involving matching alleles or gene-for-gene interactions. Two strains of B. glabrata were artificially selected for either resistance or susceptibility to each of two strains of S. mansoni parasite for three generations. Third-generation snails were then were exposed to either the parasite strain to which they had been selected or to a different parasite strain. In both host strains, resistance and susceptibility (compatibility) were found to be heritable. Moreover, compatibility to one parasite strain was not associated with compatibility to another strain, implying no genetic trade-off. Our results are discussed in terms of potential mechanisms of resistance in this host-parasite system and their implications to general coevolutionary theory.  相似文献   

17.
Environmental variation can alter the probability of parasitic infection or the fitness consequence of infection, and thus has the potential to dramatically alter the dynamics of host parasite coevolution. Here we investigated the effect of a changing temperature on host-parasite interactions using the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa. By reciprocally varying (1) the temperature at which exposure to parasites occurred and (2) the temperature at which within-host parasite growth occurred, and measuring several fitness-related traits, we show that while there are temperature combinations that favour either host or parasite, there are also conditions that favour neither, that is, negative fitness consequences for the host without fitness benefits for the parasite. This result highlights the importance of considering a heterogeneous rather than static environment in coevolutionary studies, while also showing support for an optimal virulence strategy in castrating parasites.  相似文献   

18.
The evolution of host susceptibility or resistance to parasites has important consequences for the evolution of parasite virulence, host sexual selection, population dynamics of both host and parasite populations, and programs of biological control. The general observation of a fraction of Individuals within a population that is not parasitized, and/or the variability in parasite intensity among hosts, may reflect several phenomena acting at different levels of ecological organization. Yet, host-parasite coevolution requires host susceptibility and parasite virulence to be genetically variable. In spite of evolutionary and epidemiological implications of genetic heterogeneities in host-parasite systems, evidence concerning natural populations is still scarce. Here, we wish to emphasize why we need a better knowledge of the genetics of host-parasite interaction in natural populations and to review the evidence concerning the heritability of host susceptibility or resistance to parasites in natural populations of animals.  相似文献   

19.
Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases.  相似文献   

20.
Understanding of the genetic basis for susceptibility and resistance is still lacking for most aquatic host–parasite systems, for instance, for phytoplankton and their fungal parasites. Fungal parasites can have significant effects on phytoplankton populations, mainly through their ability to decimate algal host populations during epidemics. We used random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) analysis to study levels of genetic variation within a population of the freshwater diatom Asterionella formosa Hassall in relation to parasitism by the obligate, host‐specific, fungal parasite Zygorhizidium planktonicum Canter. The level of genetic variation within the A. formosa population in Lake Maarsseveen, The Netherlands was found to be high despite the presumed absence or very low frequency of sexual reproduction in this species, the limited gene flow, and the severity of parasite attack that would purge the population from susceptible genotypes. RAPD analysis revealed four distinct banding patterns, with 3 of 21 markers (14%) being polymorphic. In AFLP analysis, every single isolate of A. formosa showed a unique banding pattern, and 120 of the 210 AFLP markers (57%) were found to be polymorphic. Furthermore, character compatibility analysis revealed that sexual reproduction may be one of the mechanisms that generates and maintains genetic variation in the A. formosa population in Lake Maarsseveen. The presence of genetic variation in A. formosa was reflected in infection experiments, which showed that genetically different A. formosa strains differed in their susceptibility to various Z. planktonicum strains and that parasite strains differed in their ability to infect particular host strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号