首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Xia CF  Huo Y  Xue L  Zhu GY  Tang CS 《生理学报》2001,53(6):431-434
为探讨抗炎因子--白细胞介素-10(IL-10)对大鼠主动脉一氧化氮(NO)/一氧化氮合酶(NOS)系统的影响,应用Griess试剂、^3H-瓜氨酸生成及蛋白免疫印迹杂交等方法,测定IL-10孵育对血管NO释放、NOS活性及表达的影响。结果发现细菌脂多糖(LPS)呈浓度领带性地激活诱导型NOS(iNOS),促进NO生成。IL-10(10^-10-10^-8g/ml)呈浓度依赖性地上调内皮型NOS(eNOS)蛋白表达及其活性,但对iNOS活性及表达无明显影响,IL-10(10^-9-10^-8g/ml)显著抑制10μg/ml LPS诱导的NO生成和iNOS激活;而高浓度IL-10(10^-7g/ml)则上调iNOS的活性,对eNOS蛋白的表达知活性无明显影响。因此IL-10对NO/NOS系统具有双重影响,一方面可抑制炎症介质诱发的作为炎性物质的iNOS的表达及激活,另一方面可上调内皮源扩血管物质NO的释放。  相似文献   

3.
Kim JM  Kim JS  Jung HC  Song IS  Kim CY 《Helicobacter》2002,7(2):116-128
Background. Nitric oxide (NO) generated by nitric oxide synthase (NOS) is known to be an important modulator of the mucosal inflammatory response. In this study, we questioned whether Helicobacter pylori infection could up‐regulate the epithelial cell inducible NOS (iNOS) gene expression and whether NO production could show polarity that can be regulated by immune mediators. Materials and Methods. Human gastric epithelial cell lines were infected with H. pylori, and the iNOS mRNA expression was assessed by quantitative RT‐PCR. NO production was assayed by determining nitrite/nitrate levels in culture supernatants. To determine the polarity of NO secretion by the H. pylori‐infected epithelial cells, Caco‐2 cells were cultured as polarized monolayers in transwell chambers, and NO production was measured. Results. iNOS mRNA levels were significantly up‐regulated in the cells infected with H. pylori, and expression of iNOS protein was confirmed by Western blot analysis. Increased NO production in the gastric epithelial cells was seen as early as 18 hours postinfection, and reached maximal levels by 24 hours postinfection. The specific MAP kinase inhibitors decreased H. pylori‐induced iNOS and NO up‐regulation. After H. pylori infection of polarized epithelial cells, NO was released predominantly into the apical compartment, and IL‐8 was released predominantly into basolateral compartment. The addition of IFN‐γ to H. pylori‐infected polarized epithelial cells showed a synergistically higher apical and basolateral NO release. Conclusion. These results suggest that apical NO production mediated by MAP kinase in H. pylori‐infected gastric epithelial cells may influence the bacteria and basolateral production of NO and IL‐8 may play a role in the tissue inflammation.  相似文献   

4.
Hyperoxia may affect lung physiology in different ways. We investigated the effect of hyperoxia on the protein expression of endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS), nitric oxide (NO) production, and hypoxic pulmonary vasoconstriction (HPV) in rat lung. Twenty-four male rats were divided into hyperoxic and normoxic groups. Hyperoxic rats were placed in > 90% F1O2 for 60 h prior to experiments. After baseline in vitro analysis, the rats underwent isolated, perfused lung experiments. Two consecutive hypoxic challenges (10 min each) were administered with the administration of a non-specific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME), in between. We measured intravascular NO production, pulmonary arterial pressure, and protein expression of eNOS and iNOS by immunohistochemistry. We found that hyperoxia rats exhibited increased baseline NO production (P < 0.001) and blunted HPV response (P < 0.001) during hypoxic challenges compared to normoxia rats. We also detected a temporal association between the attenuation in HPV and increased NO production level with a negative pre-L-NAME correlation between HPV and NO (R = 0.52, P < 0.05). After L-NAME administration, a second hypoxic challenge restored the HPV response in the hyperoxic group. There were increased protein expression of eNOS (12.6 +/- 3.1-fold, n = 3) (X200) and iNOS (8.1 +/- 2.6-fold, n = 3) (X200) in the hyperoxia group. We conclude that hyperoxia increases the protein expression of eNOS and iNOS with a subsequent increased release of endogenous NO, which attenuates the HPV response.  相似文献   

5.
6.
Inducible nitric oxide synthase modulates lipolysis in adipocytes   总被引:5,自引:0,他引:5  
The role of inducible nitric oxide synthase (iNOS) in the modulation of adipocyte lipolysis was investigated. Treatment of white and brown adipose cell lines and mouse adipose explants with a mixture of tumor necrosis factor-alpha, interferon-gamma, and lipopolysaccharide (LPS) doubled the lipolytic rate, and this was associated with marked induction of iNOS expression and nitric oxide (NO) production. iNOS inhibition by 1400W, aminoguanidine, or L-NIL pretreatment further increased the cytokine/LPS-mediated lipolysis by 30% (P < 0.05) in cultured adipocytes and in adipose explants. However, this potentiating effect of iNOS inhibition was abolished in adipose explants isolated from iNOS knockout mice. Pharmacological inhibitors of adenylyl cyclase or protein kinase A reduced cytokine/LPS-induced lipolysis and also blunted the potentiating effect of iNOS inhibition on the lipolytic rate. Furthermore, addition of the antioxidants l-cystine and l-glutathione to cytokine/LPS-stimulated adipocytes mimicked the lipolytic effect of iNOS inhibition. In conclusion, inhibition of iNOS activity in adipocytes potentiates cytokine/LPS-induced lipolysis. This effect was fully reversed by adenylyl cyclase and protein kinase A inhibitors but was mimicked by cellular antioxidants. These data suggest that iNOS-mediated NO production counteracts cytokine/LPS-mediated lipolysis in adipocytes and that this feedback mechanism involves an oxidative process upstream of cAMP production in the signaling pathway.  相似文献   

7.
The immunopathologic and inflammatory mechanisms involved in periodontal disease (PD) include the participation of host resident, inflammatory cells and chemical mediators. Metalloproteinases (MMPs) and nitric oxide (NO) play essential role in extracellular matrix turnover of periodontal tissue destruction. In this study, by means of RT-PCR through semi-quantitative densitometric scanning methods, the expression of MMPs -2 and -9 and inducible NO synthase (iNOS) was temporally and spatially investigated during the destructive mechanisms of experimentally induced PD in rats. Samples from different periods were microscopically analyzed and compared with the contralateral side (control). Our results showed significant expression of MMP-9 and iNOS in tissues affected by PD, as compared with controls, three days after PD induction, simultaneously with the beginning of alveolar bone loss. At 7 days post induction, only the MMP-9 mRNA presented a significantly higher expression, as compared with the respective controls. Thus, in the rat ligature-induced PD, MMP-9 and iNOS might importantly participate in the early stages of the disease, including inflammatory cell migration, tissue destruction and alveolar bone resorption. Also, we may suggest that the exuberant presence of PMNs may be related to the important expression of iNOS and MMP-9 found at 3 days post induction.  相似文献   

8.
The depression of cardiac contractility induced by space microgravity is an important issue of aerospace medicine research, while its precise mechanism is still unknown. In the present study, we explored effects of simulated microgravity on nitric oxide (NO) level, inducible nitric oxide synthase (iNOS) expression and related regulative mechanism using electron spin resonance (ESR) spectroscopy, immunocytochemistry and in situ hybridization. We found a remarkable increase of NO level and up-regulation of iNOS and iNOS mRNA expression in rat cardiac myocytes under simulated microgravity. Staurosporine (a nonselective protein kinase inhibitor), calphostin C (a selective protein kinase C inhibitor), partially inhibited the effect of simulated microgravity. Thus regulative effect of simulated microgravity on iNOS expression is mediated at least partially via activation of protein kinase C. These results indicate that NO system in cardiac myocytes is sensitive to simulated microgravity and may play an important role in the depression of cardiac contractility induced by simulated microgravity.  相似文献   

9.
The mechanism of endothelin-1 (ET-1)-induced nitric oxide (NO) production, MMP-1 production and MMP-13 production was investigated in human osteoarthritis chondrocytes. The cells were isolated from human articular cartilage obtained at surgery and were cultured in the absence or presence of ET-1 with or without inhibitors of protein kinase or LY83583 (an inhibitor of soluble guanylate cyclase and of cGMP). MMP-1, MMP-13 and NO levels were then measured by ELISA and Griess reaction, respectively. Additionally, inducible nitric oxide synthase (iNOS) and phosphorylated forms of p38 mitogen-activated protein kinase, p44/42, stress-activated protein kinase/Jun-N-terminal kinase and serine-threonine Akt kinase were determined by western blot. Results show that ET-1 greatly increased MMP-1 and MMP-13 production, iNOS expression and NO release. LY83583 decreased the production of both metalloproteases below basal levels, whereas the inhibitor of p38 kinase, SB202190, suppressed ET-1-stimulated production only. Similarly, the ET-1-induced NO production was partially suppressed by the p38 kinase inhibitor and was completely suppressed by the protein kinase A kinase inhibitor KT5720 and by LY83583, suggesting the involvement of these enzymes in relevant ET-1 signalling pathways. In human osteoarthritis chondrocytes, ET-1 controls the production of MMP-1 and MMP-13. ET-1 also induces NO release via iNOS induction. ET-1 and NO should thus become important target molecules for future therapies aimed at stopping cartilage destruction.  相似文献   

10.
Prolonged exposure to space microgravity results in cardiovascular deconditioning and the depression of cardiac contractility, while its mechanism is still unknown[1]. Thus study about ef-fects of microgravity on cardiac myocytes and related mechanism is an important issue in space medicine. It would also contribute to understanding effects of mechanical signal on signal transduction in cardiac myocytes and pathology of related diseases. Nitric oxide (NO) is a universal signal molecular in ce…  相似文献   

11.
Inducible nitric oxide synthase (iNOS)-dependent production of nitric oxide (NO) plays an important role in inflammation. The effects of various naturally occurring furanocoumarins on NO production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells were evaluated in vitro. The results showed that angelicin, pimpinellin, sphondin, byakangelicol, oxypeucedanin, oxypeucedanin hydrate, xanthotoxin, and cnidilin are potential NO production inhibitors, and their IC50 values for inhibition of nitrite production were 19.5, 15.6, 9.8, 16.9, 16.8, 15.8, 16.6, and 17.7 microg/mL, respectively. Distinct structure-activity relationships were also revealed for the NO production inhibitory activities of these furanocoumarins. Activities of the angelicin type such as pimpinellin and sphondin were more potent than those of the psoralen type. Presence of a methoxy at the C6 position in the angelicin type seemed to be essential to augment the activity. Western blot analysis demonstrated that only sphondin dose-dependently inhibited the expression of the iNOS protein at 2.5-20 microg/mL. However, iNOS enzyme activity was stimulated with LPS for 12 h and sphondin was administered (20 microg/mL) for 24 h, which did not reasonably inhibit iNOS enzyme activity. L-NAME (100 microM), a known specific inhibitor of iNOS, was employed as a positive control with the same protocol and showed more than 50% inhibition activity. The results demonstrate that the NO production inhibitory activity of sphondin is due to the effect of iNOS expression, but not by direct inhibition of iNOS enzyme activity. Thus, sphondin may act as a potent inhibitor of NO production under tissue-damaging inflammatory conditions.  相似文献   

12.
13.
14.
15.
Excessive release of nitric oxide (NO) by mesangial cells contributes to the pathogenesis of glomerulonephritis. Prostaglandin E(2) (PGE(2)) produced at inflammatory sites regulates the release of NO through its downstream signaling. In glomerular mesangial cells (MES-13 cells), PGE(2) modulated NO production mainly through EP4 receptor in a cAMP-dependent manner. Lipopolysaccharide and interferon-gamma (LPS+IFNgamma)-induced NO production, inducible nitric oxide synthase (iNOS) gene and protein expression were greatly inhibited by AH23848, an EP4 antagonist. Further investigation indicated that AH23848 attenuated endogenous cAMP accumulation in MES-13 cells and modulated NO production through declination of iNOS gene expression and acceleration of iNOS protein degradation. AH23848 downregulated the iNOS protein in MES-13 cells through protein kinase A (PKA) since KT5720, a PKA-specific inhibitor, reduced iNOS protein stability. A short exposure of activated MES-13 cells to okadaic acid augmented iNOS activity. AH23848 and KT5720 attenuated serine/threonine phosphorylation of iNOS protein in LPS + IFNgamma-stimulated MES-13 cells. The results of this study led us to speculate that cAMP might regulate iNOS-stimulated NO synthesis through posttranslational mechanisms. Attenuation of cAMP signaling and the phosphorylation status of the iNOS protein may account for the effect of AH23848 in accelerating iNOS protein degradation in MES-13 cells.  相似文献   

16.
17.
Inducible nitric oxide synthase (iNOS) is an homodimeric enzyme which produces large amounts of nitric oxide (NO) in response to inflammatory stimuli. Several factors affect the synthesis and catalytic activity of iNOS. Particularly, dimerization of NOS monomers is promoted by heme, whereas an intracellular depletion of heme and/or L-arginine considerably decreases NOS resistance to proteolysis. In this study, we found that oxalomalate (OMA, oxalomalic acid, alpha-hydroxy-beta-oxalosuccinic acid), an inhibitor of both aconitase and NADP-dependent isocitrate dehydrogenase, inhibited nitrite production and iNOS protein expression in lipopolysaccharide (LPS)-activated J774 macrophages, without affecting iNOS mRNA content. Furthermore, injection of OMA precursors to LPS-stimulated rats also decreased nitrite production and iNOS expression in isolated peritoneal macrophages. Interestingly, alpha-ketoglutarate or succinyl-CoA administration reversed OMA effect on NO production, thus correlating NO biosynthesis with the anabolic capacity of Krebs cycle. When protein synthesis was blocked by cycloheximide in LPS-activated J774 cells treated with OMA, iNOS protein levels, evaluated by Western blot analysis and (35)S-metabolic labelling, were decreased, suggesting that OMA reduces iNOS biosynthesis and induces an increase in the degradation rate of iNOS protein. Moreover, we showed that OMA inhibits the activity of the iNOS from lung of LPS-treated rats by enzymatic assay. Our results, demonstrating that OMA acts regulating synthesis, catalytic activity and degradation of iNOS, suggest that this compound might have a potential role in reducing the NO overproduction occurring in some pathological conditions.  相似文献   

18.
19.
We recently reported that two water-soluble derivatives of ferulic acid (1-feruloyl glycerol, 1-feruloyl diglycerol) previously developed by our group exhibited protective effects against amyloid-β–induced neurodegeneration in vitro and in vivo. In the current study, we aimed to further understand this process by examining the derivatives’ ability to suppress abnormal activation of astrocytes, the key event of neurodegeneration. We investigated the effects of ferulic acid (FA) derivatives on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in rat primary astrocytes. The results showed that these compounds inhibited NO production and iNOS expression in a concentration-dependent manner and that the mechanism underlying these effects was the suppression of the nuclear factor-κB pathway. This evidence suggests that FA and its derivatives may be effective neuroprotective agents and could be useful in the treatment of neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease.  相似文献   

20.
Inducible nitric oxide synthase (iNOS) is responsible for nitric oxide (NO) synthesis from l-arginine in response to inflammatory mediators. It is reported that iNOS is degraded mainly by the ubiquitin-proteasome pathway in RAW264.7 cells and human embryonic kidney (HEK) 293 cells. In this study, we showed that iNOS was ubiquitinated and degraded dependent on CHIP (COOH terminus of heat shock protein 70-interacting protein), a chaperone-dependent ubiquitin ligase. The results from overexpression and RNAi experiments demonstrated that CHIP decreased the protein level of iNOS, shortened the half-life of iNOS and attenuated the production of NO. Furthermore, CHIP promoted ubiquitination and proteasomal degradation of iNOS by associating with iNOS. These results suggest that CHIP plays an important role in regulation iNOS activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号