首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Variation in mitochondrial genome organization and expression between male fertile and sterile nuclear-cytoplasmic combinations of sorghum has been examined. Cytoplasmic genotypes were classified into eleven groups on the basis of restriction endonuclease digestion of mitochondrial DNA (mtDNA) and five groups on the basis of mitochondrial translation products. These cytoplasms were further characterized by hybridization of specific gene probes to Southern blots of EcoRI digested mtDNA, and identification of the fragment location of four mitochondrial genes. Variation was observed in the genomic location and copy number of the F1 ATPase -subunit gene, as well as the genomic location and gene product of the cytochrome c oxidase subunit I gene. The effect of nuclear genotype on mitochondrial genome organization, expression and the presence of two linear plasmid-like mtDNA molecules was examined. Our results indicate that nuclear-mitochondrial interactions are required for regulation of mitochondrial gene expression. When a cytoplasm is transferred from its natural to a foreign nuclear background some changes in the products of in organello mitochondrial protein synthesis occur. In a number of cytoplasmic genotypes these changes correlate with the expression of cytoplasmic male sterile phenotype, suggesting a possible molecular basis for this mutation.  相似文献   

2.
Mitochondrial inner membrane uncoupling proteins (UCP) catalyze a proton conductance that dissipates the proton electrochemical gradient established by the respiratory chain, thus affecting the yield of ATP synthesis. UCPs are involved in mitochondrial energy flow regulation and have been implicated in oxidative stress tolerance. Based on the global gene expression profiling datasets available for Arabidopsis thaliana, in this review we discuss the regulation of UCP gene expression during development and in response to stress, and provide interesting insights on the possible existence of epigenetic regulation of UCP expression.  相似文献   

3.
We describe a new and potentially universal selection system for mitochondrial transformation based on bacterial genes, and demonstrate its feasibility in Saccharomyces cerevisiae. We first found that cytoplasmically synthesized Barnase, an RNase, interferes with mitochondrial gene expression when targeted to the organelle, without causing lethality when expressed at appropriate levels. Next, we synthesized a gene that uses the yeast mitochondrial genetic code to direct the synthesis of the specific Barnase inhibitor Barstar, and demonstrated that expression of this gene, BARSTM, integrated in mtDNA protects respiratory function from imported barnase. Finally, we showed that screening for resistance to mitochondrially targeted barnase can be used to identify rare mitochondrial transformants that had incorporated BARSTM in their mitochondrial DNA. The possibility of employing this strategy in other organisms is discussed.Communicated by R. G. Herrmann  相似文献   

4.
5.
In previous papers we have reported the characterisation of mitochondrial mutator mutants of Schizosaccharomyces pombe. In contrast to nuclear mutator mutants known from other eucaryotes, this mutator phenotype correlates with mutations in an unassigned open reading frame (urf a) in the mitochondrial genome. Since an efficient biolistic transformation system for fission yeast mitochondria is not yet available, we relocated the mitochondrial urf a gene to the nucleus. As host strain for the ectopic expression, we used the nonsense mutant ana r -6, which carries a premature stop codon in the urf a gene. The phenotype of this mutant is characterised by continuous segregation of progeny giving rise to fully respiration competent colonies, colonies that show moderate growth on glycerol and a fraction of colonies that are unable to grow on glycerol. The phenotype of this mutant provides an excellent tool with which to study the effects on the mutator phenotype of ectopic expression of the urf a gene. Since a UGA codon encoding tryptophan is present in the original mitochondrial gene, we constructed two types of expression cassettes containing either the mitochondrial version of the urf a gene (mt-urf a) or a standard genetic code version (nc-urf a; UGA replaced by UGG) fused to the N-terminal import leader sequence of the cox4 gene of Saccharomyces cerevisiae. We show that the expression of the mt-urf a gene in its new location is able to cure, at least in part, the phenotype of mutant ana r -6, whereas the expression of the nc-urf a gene completely restores the wild-type (non-mutator) phenotype. The significant similarity of the urf a gene to the mitochondrial var1 gene of S. cerevisiae and homologous genes in other yeasts suggests that the urf a gene product might be a ribosomal protein with a dual function in protein synthesis and maintenance of mitochondrial DNA integrity. Received: 13 May 1997 / Accepted: 14 January 1998  相似文献   

6.
In sugar beet, cytoplasmic male sterility (CMS) is conferred by the Owen mitochondrion (Svulg). In order to find polypeptides specific to this cytoplasm and putatively involved in CMS, we assessed the protein expressions of Svulg and a non-sterilizing mitochondrion (Nvulg) by in organello protein synthesis of mitochondria isolated from leaves. Given the hydrophobicity of mitochondrial translation products, we compared the in organello synthesis polypeptides of both cytoplasms with an acid-base two-dimensional electrophoresis adapted to hydrophobic protein separation. To evaluate the possible effect of nuclear background, we assessed the mitochondrial protein expression in three different nuclear backgrounds by using three near-isogenic-line pairs. While three to four variant polypeptides were revealed for each nuclear context, each variant polypeptide was specific to a nuclear-cytoplasmic context. Although this study did not enable us to unambiguously find any variant polypeptide related to CMS, we did observe an effect of the nucleus on mitochondrial gene expression. Received: 25 April 2000 / Accepted: 17 October 2000  相似文献   

7.
In this study, we describe a cell-free protein synthesis consolidated with polymerase chain reaction (PCR)-based synthetic gene assembly that allows for streamlined translation of genetic information. In silico-designed fragments of target genes were PCR-assembled and directly expressed in a cell-free synthesis system to generate functional proteins. This method bypasses the procedures required in conventional cell-based gene expression methods, integrates gene synthesis and cell-free protein synthesis, shortens the time to protein production, and allows for facile regulation of gene expression by manipulating the oligomer sequences used for gene synthesis. The strategy proposed herein expands the flexibility and throughput of the protein synthesis process, a fundamental component in the construction of synthetic biological systems.  相似文献   

8.
Mitochondria possess a small genome that codes for core subunits of the oxidative phosphorylation system and whose expression is essential for energy production. Information on the regulation and spatial organization of mitochondrial gene expression in the cellular context has been difficult to obtain. Here we devise an imaging approach to analyze mitochondrial translation within the context of single cells, by following the incorporation of clickable non‐canonical amino acids. We apply this method to multiple cell types, including specialized cells such as cardiomyocytes and neurons, and monitor with spatial resolution mitochondrial translation in axons and dendrites. We also show that translation imaging allows to monitor mitochondrial protein expression in patient fibroblasts. Approaching mitochondrial translation with click chemistry opens new avenues to understand how mitochondrial biogenesis is integrated into the cellular context and can be used to assess mitochondrial gene expression in mitochondrial diseases.  相似文献   

9.
Two filamentous phage gene products are required for the replication of phage DNA. One of these, the gene II protein, is a site-specific endonuclease required for all phage-specific DNA synthesis. The other, the gene V protein, is a single-stranded DNA-binding protein required only for single-strand synthesis. Purified gene V protein, when added to an in vitro protein synthesizing system programmed by f1 DNA, specifically inhibits the synthesis of gene II protein. Inhibition seems to be translational, since synthesis of gene II protein from an RNA template is also inhibited by gene V protein. Gene V protein control of gene II expression can account for the regulation of the level of expression of the filamentous phage genome.  相似文献   

10.
Mitochondria are organelles centrally important for bioenergetics as well as regulation of apoptotic death in eukaryotic cells. High-mobility group box 1 (HMGB1), an evolutionarily conserved chromatin-associated protein which maintains nuclear homeostasis, is also a critical regulator of mitochondrial function and morphology. We show that heat shock protein beta-1 (HSPB1 or HSP27) is the downstream mediator of this effect. Disruption of the HSPB1 gene in embryonic fibroblasts with wild-type HMGB1 recapitulates the mitochondrial fragmentation, deficits in mitochondrial respiration, and adenosine triphosphate (ATP) synthesis observed with targeted deletion of HMGB1. Forced expression of HSPB1 reverses this phenotype in HMGB1 knockout cells. Mitochondrial effects mediated by HMGB1 regulation of HSPB1 expression serve as a defense against mitochondrial abnormality, enabling clearance and autophagy in the setting of cellular stress. Our findings reveal an essential role for HMGB1 in autophagic surveillance with important effects on mitochondrial quality control.  相似文献   

11.
Mitochondrial dysfunction in the nigrostriatal dopaminergic system is a critical hallmark of Parkinson's disease (PD). Mitochondrial toxins produce cellular and behavioural dysfunctions resembling those in patients with PD. Causative gene products for familial PD play important roles in mitochondrial function. Therefore, targeting proteins that regulate mitochondrial integrity could provide convincing strategies for PD therapeutics. We have recently identified a novel 13‐kDa protein (p13) that may be involved in mitochondrial oxidative phosphorylation. In the current study, we examine the mitochondrial function of p13 and its involvement in PD pathogenesis using mitochondrial toxin‐induced PD models. We show that p13 overexpression induces mitochondrial dysfunction and apoptosis. p13 knockdown attenuates toxin‐induced mitochondrial dysfunction and apoptosis in dopaminergic SH‐SY5Y cells via the regulation of complex I. Importantly, we generate p13‐deficient mice using the CRISPR/Cas9 system and observe that heterozygous p13 knockout prevents toxin‐induced motor deficits and the loss of dopaminergic neurons in the substantia nigra. Taken together, our results suggest that manipulating p13 expression may be a promising avenue for therapeutic intervention in PD.  相似文献   

12.
We have analysed a new gene, CEM1, from Saccharomyces cerevisiae. Inactivation of this gene leads to a respiratory-deficient phenotype. The deduced protein sequence shows strong similarities with β-keto-acyl synthases or condensing enzymes. Typically, enzymes of this class are involved in the synthesis of fatty acids or similar molecules. An analysis of the mitochondrial lipids and fatty acids shows no major difference between the wild type and deleted strains. Implying that the CBM1 gene product is not involved in the synthesis of the bulk fatty acids. Thus it Is possible that the CEM1 protein is involved in the synthesis of a specialized molecule, probably related to a fatty acid, which is essential for mitochondrial respiration.  相似文献   

13.
Mitochondria contain a nuclear-encoded heat shock protein, HSP60, which functions as a chaperonin in the post-translational assembly of multimeric proteins encoded by both nuclear and mitochondrial genes. We have isolated and sequenced full-length complementary DNAs coding for this mitochondrial chaperonin in Arabidopsis thaliana and Zea mays. Southern-blot analysis indicates the presence of a single hsp60 gene in the genome of A. thaliana. There is a high degree of homology at the predicted amino acid levels (43 to 60%) between plant HSP60s and their homologues in prokaryotes and other eukaryotes which indicates that these proteins must have similar evolutionarily conserved functions in all organisms. Northern- and western-blot analyses indicate that the expression of the hsp60 gene is developmentally regulated during seed germination. It is also heat-inducible. Developmental regulation of the (-subunit) of F1-ATPase, an enzyme complex that is involved in the cyanide-sensitive mitochondrial electron transport system, indicates that imbibed embryos undergo rapid mitochondrial biogenesis through the early stages of germination. Based on the functional role of HSP60 in macromolecular assembly, these data collectively suggest that the presence of higher levels of HSP60 is necessary during active mitochondrial biogenesis, when the need for this protein is greatest in assisting the rapid assembly of the oligomeric protein structures.  相似文献   

14.
Liu JZ  Gao WX  Cai MC  Cao LF  Sun BY 《生理学报》2002,54(6):485-489
本文探讨介质中ATP浓度和急,慢性缺氧暴露对大鼠脑线粒体内RNA和蛋白质合成的影响。用差速离心法分离正常和低压舱模拟4000m高原急性连续缺氧暴露3d和慢性连续缺氧暴露40d大鼠脑线粒体,用体外无细胞(cell-free in vitro)^3H-UTP和^3H-Leucine掺入法分别测定线粒体RNA和蛋白质合成活性,结果显示,大鼠急性缺氧暴露后大脑皮质线粒体RNA体外合成活性降低40%,蛋白质合成活性降低60%;慢性缺氧暴露后线粒体RNA和蛋白质合成活性分别为对照的72%和76%;ATP对正常大鼠脑线粒体RNA以及蛋白质的体外合成活性的影响均呈双相性,大于或小于1mmol/L均可产生不同程度的抑制效应,结果提示,缺氧可在转录和翻译两个水平上影响脑线粒体mtDNA的表达,而慢性缺氧暴露时,线粒体半自主性功能的改善可能是机体对缺氧适应的细胞机制之一;ATP对脑线粒体内转录和释放活性的调节是一种经济有效的反馈调节方式。  相似文献   

15.
16.
Due to recent advances in genome sequencing, there has been a dramatic increase in the quantity of genetic information, which has lead to an even greater demand for a faster, more parallel expression system. Therefore, interest in cell-free protein synthesis, as an alternative method for high-throughput gene expression, has been revived. In contrast toin vivo gene expression methods, cell-free protein synthesis provides a completely open system for direct access to the reaction conditions. We have developed an efficient cell-free protein synthesis system by optimizing the energy source and S30 extract. Under the optimized conditions, approximately 650 μg/mL of protein was produced after 2 h of incubation, with the developed system further modified for the efficient expression of PCR-amplified DNA. When the concentrations of DNA, magnesium, and amino acids were optimized for the production of PCR-based cell-free protein synthesis, the protein yield was comparable to that from the plasmid template.  相似文献   

17.
18.
Summary Induction of several enzymes is abolished in respiratory deficient strains of Saccharomyces cerevisiae. Such block depends on the integrity of the mitochondrial protein sinthesizing machinery. A model is proposed which is based on a double control of protein synthesis, a negative regulation similar to that described in E. coli and a positive regulation mediated by mitochondria.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号