首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The diversity of body sizes observed among species of a clade is a combined result of microevolutionary processes (i.e. natural selection and genetic drift) that cause size changes within phylogenetic lineages, and macroevolutionary processes (i.e. speciation and extinction) that affect net rates of diversification among lineages. Here we assess trends of size diversity and evolution in fishes (non-tetrapod craniates), employing paleontological, macroecological, and phylogenetic information. Fishes are well suited to studies of size diversity and evolution, as they are highly diverse, representing more than 50% of all living vertebrate species, and many fish taxa are well represented in the fossil record from throughout the Phanerozoic. Further, the frequency distributions of sizes among fish lineages resemble those of most other animal taxa, in being right-skewed, even on a log scale. Using an approach that measures rates of size evolution (in darwins) within a formal phylogenetic framework, we interpret the shape of size distributions as a balance between the competing forces of diversification, pushing taxa away from ancestral values, and of conservation, drawing taxa closer to a central tendency. Within this context we show how non-directional mechanisms of evolution (i.e. passive diffusion processes) can produce an hitherto unperceived bias to larger size, when size is measured on the conventional log scale. These results demonstrate how the interpretation of macroecological datasets can be enriched from an historical perspective, and document the ways in which macroevolutionary and microevolutionary processes may be decoupled in the production of size diversity.  相似文献   

2.
A central theme connecting macroevolutionary processes to macroecological patterns is the shaping of regional biodiversity over time through speciation, extinction, migration, and range shifts. The use of phylogenies to explore the dynamics of diversification due to variation in speciation and extinction rates has been well-developed and there are established methods for inferring speciation times from phylogenies and generating its null distributions (as represented by node heights on molecular phylogenies). But inferring colonization events from phylogenies is more challenging. Unlike speciation events, represented by nodes, colonization events could occur at any point along a branch connecting species in the assemblage to the regional pool. We account for uncertainty in identification of colonization lineages and timing of colonization events by using an efficient analytical solution to inferring the distribution of colonization times from an assemblage phylogeny. Using the same solution, we efficiently derive the null distribution of colonization times, which provides us with a general approach to testing the adequacy of a model to describe colonization events into the assemblage. We illustrate this approach by demonstrating how the movement of squamate lineages into Madagascar has been uneven over time, peaking in the early Cenozoic when ocean conditions favored colonization.  相似文献   

3.
1. Range size, population size and body size, the key macroecological variables, vary temporally both within and across species in response to anthropogenic and natural environmental change. However, resulting temporal trends in the relationships between these variables (i.e. macroecological patterns) have received little attention. 2. Positive relationships between the local abundance and regional occupancy of species (abundance-occupancy relationships) are among the most pervasive of all macroecological patterns. In the absence of formal predictions of how abundance-occupancy relationships may vary temporally, we outline several scenarios of how changes in abundance within species might affect interspecific patterns. 3. We use data on the distribution and abundance of 73 farmland and 55 woodland bird species in Britain over a 32-year period encompassing substantial habitat modification to assess the likelihood of these scenarios. 4. In both farmland and woodland habitats, the interspecific abundance-occupancy relationship changed markedly over the period 1968-99, with a significant decline in the strength of the relationship. 5. Consideration of intraspecific dynamics shows that this has been due to a decoupling of abundance and occupancy particularly in rare and declining species. Insights into the intraspecific processes responsible for the interspecific trend are obtained by analysis of temporal trends in the distribution of individuals between sites, which show patterns consistent with habitat quality declines. 6. This study shows that a profitable approach to ascertaining the nature of human impacts is to link intra- and interspecific processes. In the case of British farmland and woodland birds, changes to the environment lead to species-specific responses in large-scale distributions. These species-specific changes are the driver of the observed changes in the form and strength of the interspecific relationship.  相似文献   

4.
Aim Variations in body size are well established for many taxa of endotherms and ectotherms, but remain poorly documented for marine invertebrates. Here we explore how body size varies with latitude, temperature and productivity for a major marine invertebrate class, the Bivalvia. Location Continental shelves world‐wide. Methods We used regression models to assess univariate relationships between size and latitude as well as multivariate relationships between size, latitude and environmental parameters (mean and seasonality in temperature and mean productivity). The dataset consisted of 4845 species in 59 families from shelf depths at all latitudes in the Pacific and Atlantic oceans. We also used Blomberg's K to assess whether size–latitude relationships show phylogenetic signal, and test whether functional groups based on feeding mode, substrate relationships, mobility and fixation can account for observed size–latitude trends. Results Size–latitude trends are taxonomically and geographically common in bivalves, but vary widely in sign and strength – no simple explanations based on environmental parameters, phylogeny or functional group hold across all families. Perhaps most importantly, we found that the observed trends vary considerably between hemispheres and among coastlines. Main conclusions Broadly generalizable macroecological patterns in inter‐specific body size may not exist for marine invertebrates. Although size–latitude trends occur in many bivalve lineages, the underlying mechanisms evidently differ among regions and/or lineages. Fully understanding macroecological patterns requires truly global datasets as well as information about the evolutionary history of specific lineages and regions.  相似文献   

5.
The diversity of body sizes of organisms has traditionally been explained in terms of microevolutionary processes: natural selection owing to differential fitness of individual organisms, or to macroevolutionary processes: species selection owing to the differential proliferation of phylogenetic lineages. Data for terrestrial mammals and birds indicate that even on a logarithmic scale frequency distributions of body mass among species are significantly skewed towards larger sizes. We used simulation models to evaluate the extent to which macro- and microevolutionary processes are sufficient to explain these distributions. Simulations of a purely cladogenetic process with no bias in extinction or speciation rates for different body sizes did not produce skewed log body mass distributions. Simulations that included size-biased extinction rates, especially those that incorporated anagenetic size change within species between speciation and extinction events, regularly produced skewed distributions. We conclude that although cladogenetic processes probably play a significant role in body size evolution, there must also be a significant anagenetic component. The regular variation in the form of mammalian body size distributions among different-sized islands and continents suggests that environmental conditions, operating through both macro- and microevolutionary processes, determine to a large extent the diversification of body sizes within faunas. Macroevolution is not decoupled from microevolution.  相似文献   

6.
The most pervasive macroecological patterns concern (1) the frequency distribution of range size, (2) the relationship between range size and species abundance and (3) the effect of body size on range size. We investigated these patterns at a regional scale using the tenebrionid beetles of Latium (Central Italy). For this, we calculated geographical range size (no. of 10‐km square cells), ecological tolerance (no. of phytoclimatic units) and abundance (no. of sampled individuals) using a large database containing 3561 georeferenced records for 84 native species. For each species, we also calculated body mass and its ‘phylogenetic diversity’ on the basis of cladistic relationships. Frequency distribution of range size followed a log‐normal distribution as found in many other animal groups. However, a log‐normal distribution accommodated well the frequency distribution of ecological tolerance, a so far unexplored issue. Range size was correlated with abundance and ecological tolerance, thus supporting the hypothesis that a positive correlation between distribution and abundance is a reflection of interspecific differences in ecological specialization. Larger species tended to have larger ranges and broader ecological tolerance. However, contrary to what known in most vertebrates, not only small‐sized, but also many medium‐to‐large‐sized species exhibited great variability in their range size, probably because tenebrionids are not so strictly influenced by body size constraints (e.g. home ranges) as vertebrates. Moreover, in contrast to other animals, tenebrionid body size does not influence species abundances, probably because these detritivorous animals are not strongly regulated by competition. Finally, contrary to the assumption that rare species should be mainly found among lineages that split from basal nodes, rarity of a tenebrionid species was not influenced by the phylogenetic position of its tribe. However, lineages that split from more basal nodes had lower variability in terms of species geographical distribution, ecological tolerance and abundance, which suggests that lineages that split from more basal nodes are not only morphologically conservative but also tend to have an ecological ‘inertia’.  相似文献   

7.
Environmental stress response in plants has been studied using a wide range of approaches, from lab-based investigation of biochemistry and genetics, to glasshouse studies of physiology and growth rates, to field-based trials and ecological surveys. It is also possible to investigate the evolution of environmental stress responses using macroevolutionary and macroecological analyses, analysing data from many different species, providing a new perspective on the way that environmental stress shapes the evolution and distribution of biodiversity. “Macroevoeco” approaches can produce intriguing results and new ways of looking at old problems. In this review, we focus on studies using phylogenetic analysis to illuminate macroevolutionary patterns in the evolution of environmental stress tolerance in plants. We follow a particular thread from our own research—evolution of salt tolerance—as a case study that illustrates a macroevolutionary way of thinking that opens up a range of broader questions on the evolution of environmental stress tolerances. We consider some potential future applications of macroevolutionary and macroecological analyses to understanding how diverse groups of plants evolve in response to environmental stress, which may allow better prediction of current stress tolerance and a way of predicting the capacity of species to adapt to changing environmental stresses over time.  相似文献   

8.
Aim Phylogenetic diversity can provide insight into how evolutionary processes may have shaped contemporary patterns of species richness. Here, we aim to test for the influence of phylogenetic history on global patterns of amphibian species richness, and to identify areas where macroevolutionary processes such as diversification and dispersal have left strong signatures on contemporary species richness. Location Global; equal‐area grid cells of approximately 10,000 km2. Methods We generated an amphibian global supertree (6111 species) and repeated analyses with the largest available molecular phylogeny (2792 species). We combined each tree with global species distributions to map four indices of phylogenetic diversity. To investigate congruence between global spatial patterns of amphibian species richness and phylogenetic diversity, we selected Faith’s phylogenetic diversity (PD) index and the total taxonomic distinctness (TTD) index, because we found that the variance of the other two indices we examined (average taxonomic distinctness and mean root distance) strongly depended on species richness. We then identified regions with unusually high or low phylogenetic diversity given the underlying level of species richness by using the residuals from the global relationship of species richness and phylogenetic diversity. Results Phylogenetic diversity as measured by either Faith’s PD or TTD was strongly correlated with species richness globally, while the other two indices showed very different patterns. When either Faith’s PD or TTD was tested against species richness, residuals were strongly spatially structured. Areas with unusually low phylogenetic diversity for their associated species richness were mostly on islands, indicating large radiations of few lineages that have successfully colonized these archipelagos. Areas with unusually high phylogenetic diversity were located around biogeographic contact zones in Central America and southern China, and seem to have experienced high immigration or in situ diversification rates, combined with local persistence of old lineages. Main conclusions We show spatial structure in the residuals of the relationship between species richness and phylogenetic diversity, which together with the positive relationship itself indicates strong signatures of evolutionary history on contemporary global patterns of amphibian species richness. Areas with unusually low and high phylogenetic diversity for their associated richness demonstrate the importance of biogeographic barriers to dispersal, colonization and diversification processes.  相似文献   

9.
Phylogenetic community structure may help us understand how macroecological and macroevolutionary processes shape assemblages at large geographical scales. In this paper, we test hypotheses linking the formation of large‐scale assemblages, evolutionary processes and macroecology. To provide new insight into ruminant biogeography and evolution, phylogenetic community structure metrics were calculated for faunal assemblages at four hierarchical levels. Phylogenetic relatedness indices (net relatedness index and nearest taxon index) were determined for 59 ruminant assemblages at the landscape scale and scale of their respective climate domains (continuous biome stretches). Species pools at the global and biogeographic realm levels were used to construct null observation models. Significantly, assemblages were selected if they were distributed across biogeographic realms and represented all the world's biomes. Non‐random patterns were also tested for biogeographic realms within the global ruminant species pool. By examining ruminant assemblages at different scales we were able to observe that ruminant faunas show a distribution mainly limited within the boundaries of their biogeographic realms. However, the diversification of some clades was found to be restricted to extremely arid domains in the Sahara and Arabia. The random patterns featured by other extreme climate domains could reflect phylogenetically heterogeneous filling by less biome‐restricted lineages outside Africa.  相似文献   

10.
We tested for the occurrence of Bergmann's rule, the pattern of increasing body size with latitude, and Rapoport's rule, the positive relationship between geographical range size and latitude, in 34 lineages of Liolaemus lizards that occupy arid regions of the Andean foothills. We tested the climatic-variability hypothesis (CVH) by examining the relationship between thermal tolerance breadth and distribution. Each of these analyses was performed varying the level of phylogenetic inclusiveness. Bergmann's rule and the CVH were supported, but Rapoport's rule was not. More variance in the data for Bergmann's rule and the CVH was explained using species belonging to the L. boulengeri series rather than all species, and inclusion of multiple outgroups tended to obscure these macroecological patterns. Evidence for Bergmann's rule and the predicted patterns from the CVH remained after application of phylogenetic comparative methods, indicating a greater role of ecological processes rather than phylogeny in shaping the current species distributions of these lizards.  相似文献   

11.
Knowing the geographic extents of species is crucial for understanding the causes of diversity distributions and modes of speciation and extinction. Species geographic ranges are often viewed as approximately constant in size in geological time, even though climate change studies have shown that historical and modern species geographic distributions are not static. Here, we use an extensive global microfossil database to explore the temporal trajectories of geographic extents over the entire lifespan of marine nannoplankton, diatom, planktic foraminifer and radiolarian species. We show that geographic extents are not static over geological time-scales. Temporal trajectories of species geographic ranges are asymmetric: the rise is quicker than the fall. We propose that once a species has overcome its initial difficulties in geographic establishment, it rises to its peak geographic extent. However, once this peak value is reached, it will also have a maximal number of species to interact with. The negative of these biotic interactions could then cause a gradual geographic decline. We discuss the multiple implications of our findings with reference to macroecological and macroevolutionary studies.  相似文献   

12.
Among the earliest macroecological patterns documented, is the range and body size relationship, characterized by a minimum geographic range size imposed by the species’ body size. This boundary for the geographic range size increases linearly with body size and has been proposed to have implications in lineages evolution and conservation. Nevertheless, the macroevolutionary processes involved in the origin of this boundary and its consequences on lineage diversification have been poorly explored. We evaluate the macroevolutionary consequences of the difference (hereafter the distance) between the observed and the minimum range sizes required by the species’ body size, to untangle its role on the diversification of a Neotropical species‐rich bird clade using trait‐dependent diversification models. We show that speciation rate is a positive hump‐shaped function of the distance to the lower boundary. The species with highest and lowest distances to minimum range size had lower speciation rates, while species close to medium distances values had the highest speciation rates. Further, our results suggest that the distance to the minimum range size is a macroevolutionary constraint that affects the diversification process responsible for the origin of this macroecological pattern in a more complex way than previously envisioned.  相似文献   

13.
Evolutionary biologists have long debated the relative influence of species selection on evolutionary patterns. As a test, we apply a statistical phylogenetic approach to evaluate the influence of traits related to species distribution and life-history characteristics on patterns of diversification in salamanders. We use independent contrasts to test trait-mediated diversification while accommodating phylogenetic uncertainty in relationships among all salamander families. Using a neontological data set, we find several species-level traits to be variable, heritable, and associated with differential success (i.e., higher diversification rates) at higher taxonomic categories. Specifically, the macroecological trait of small geographic-range size is strongly correlated with a higher rate of net diversification. We further consider the role that plasticity in life-history traits appears to fulfill in macroevolutionary processes of lineage divergence and durability. We find that pedotypy--wherein some, but not all, organisms of a species mature in the gilled form without metamorphosing-is also associated with higher net diversification rate than is the absence of developmental plasticity. Often dismissed as an insignificant process in evolution, we provide direct evidence for the role of species selection in lineage diversification of salamanders.  相似文献   

14.
Aim At broad geographical scales, species richness is a product of three basic processes: speciation, extinction and migration. However, determining which of these processes predominates is a major challenge. Whilst palaeontological studies can provide information on speciation and extinction rates, data are frequently lacking. Here we use a recent dated phylogenetic tree of mammals to explore the relative importance of these three processes in structuring present‐day richness gradients. Location The global terrestrial biosphere. Methods We combine macroecological data with phylogenetic methods more typically used in community ecology to describe the phylogenetic history of regional faunas. Using simulations, we explore two simple phylogenetic metrics, the mean and variance in the pairwise distances between taxa, and describe their relationship to phylogenetic tree topology. We then use these two metrics to characterize the evolutionary relationships among mammal species assemblages across the terrestrial biome. Results We show that the mean and variance in the pairwise distances describe phylogenetic tree topology well, but are less sensitive to phylogenetic uncertainty than more direct measures of tree shape. We find the phylogeny for South American mammals is imbalanced and ‘stemmy’ (long branches towards the root), consistent with recent diversification within evolutionarily disparate lineages. In contrast, the phylogeny for African mammals is balanced and ‘tippy’ (long branches towards the tips), more consistent with the slow accumulation of diversity over long times, reflecting the Old World origin of many mammal clades. Main conclusions We show that phylogeny can accurately capture biogeographical processes operating at broad spatial scales and over long time periods. Our results support inferences from the fossil record – that the New World tropics are a diversity cradle whereas the Old World tropics are a museum of old diversity.  相似文献   

15.
1. We examined whether the local abundance of stream bryophytes in a boreal drainage basin (Koutajoki system in northeastern Finland) correlated with their: (i) regional occupancy; (ii) provincial distribution in northwestern Europe; and (iii) global range size. We specifically tested whether aquatic and semi‐aquatic species differ in their distribution–abundance relationships. We also analysed the frequency distributions of occupancy at two spatial scales: within the focal drainage system and across provinces of northwestern Europe. 2. Regional occupancy and mean local abundance of stream bryophytes were positively correlated, and the relationship was rather strong in aquatic species but very weak in semi‐aquatic species. Local abundance was related neither to provincial distribution nor global distribution. 3. Species frequency distributions differed between regional occupancy and provincial distribution. While most species were rare with regard to their regional occupancy within the focal drainage system, most of the same set of species were common and occurred in most provinces in northwestern Europe. 4. The results indicate the presence of dominants (core species) and transients/subordinates (satellite species) among stream bryophytes, highlighting marked differentiation in life‐history strategies and growth form. The observed abundance–occupancy relationships suggest that dispersal limitation and metapopulation processes may govern the dynamics of obligatory aquatic stream bryophytes. In semi‐aquatic species, however, habitat availability may be more important in contributing to regional occupancy.  相似文献   

16.
Recent studies suggest that species' life histories and ecology can be used to forecast future extinction risk. Threatened species often share similar traits such that if a trait predisposing a species to decline or extinction is evolutionarily conserved, then close relatives of threatened species are themselves likely to be at risk. The phylogenetic distribution of current threat has been argued to provide insight into the species that could be threatened in the future when trait data are not available. Conservation criteria are typically based on multiple indices that capture different symptoms of threat including population trends and range contraction. However, there is no reason to assume consistent phylogenetic distributions of different symptoms. I construct a molecular phylogeny of 249 species of British birds (more than 93% of the breeding and wintering species) and use this to show that the species that are threatened due to population declines are phylogenetically more closely related than expected by chance alone. However, species that are listed for other reasons, including range contraction, are distributed randomly with respect to phylogeny. I suggest that while phylogeny can be informative with respect to identifying clades that are susceptible to some measures of extinction risk, such patterns are likely to be idiosyncratic with respect to symptom and taxa.  相似文献   

17.
Mistletoes are hemiparasites that access water and nutrients from their hosts. Previous studies have suggested that host genera with high nitrogen are parasitized by more mistletoe species but these studies failed to take into account phylogenetic relationships among host genera. Our main question was whether more mistletoe species parasitize host genera with high nitrogen content when phylogenetic relationships were controlled. We also asked whether patterns in mistletoe parasitism were related to host geographic range size, host fruit type and host spinescence. Overall, we found no difference between conventional and phylogenetically controlled analyses. We also found no evidence for higher mistletoe species richness on host genera with high nitrogen, fleshy fruits or spinescence. However, similar to findings for animal parasites, we found that host genera with large geographic range had higher mistletoe species richness. This is likely because a greater number of mistletoe species will encounter hosts that have a greater geographic distribution. Mistletoe studies frequently assume that nitrogen status drives patterns in mistletoe parasitism but our study suggests that macroecological patterns in mistletoe assemblages are primarily determined by host geographic range.  相似文献   

18.
Many species are threatened with extinction and efforts are underway worldwide to restore imperilled species to their native ranges. Restoration requires knowledge of species' historical diversity and distribution. For some species, many populations were extirpated or individuals moved beyond their native range before native diversity and distribution were documented, resulting in a lack of accurate information for establishing restoration goals. Moreover, traditional taxonomic assessments often failed to accurately capture phylogenetic diversity. We illustrate a general approach for estimating regional native diversity and distribution for cutthroat trout in the Southern Rocky Mountains. We assembled a large archive of historical records documenting human‐mediated change in the distribution of cutthroat trout (Oncorhynchus clarkii) and combined these data with phylogenetic analysis of 19th century samples from museums collected prior to trout stocking activities and contemporary DNA samples. Our study of the trout in the Southern Rocky Mountains uncovered six divergent lineages, two of which went extinct, probably in the early 20th century. A third lineage, previously declared extinct, was discovered surviving in a single stream outside of its native range. Comparison of the historical and modern distributions with stocking records revealed that the current distribution of trout largely reflects intensive stocking early in the late 19th and early 20th century from two phylogenetically and geographically distinct sources. Our documentation of recent extinctions, undescribed lineages, errors in taxonomy and dramatic range changes induced by human movement of fish underscores the importance of the historical record when developing and implementing conservation plans for threatened and endangered species.  相似文献   

19.
Aim  The paradigm that species' patterns of distribution, abundance and coexistence are the result of adaptations of the species to their niches has recently been challenged by evidence that similar patterns may be generated by simple random processes. We argue here that a better understanding of macroecological patterns requires an integration of both ecological and neutral stochastic approaches. We demonstrate the utility of such an integrative approach by testing the sampling hypothesis in a species–energy relationship of forest bird species.
Location  A Mediterranean biome in Catalonia, Spain.
Methods  To test the sampling hypothesis we designed a metacommunity model that reproduces the stochastic sampling from a regional pool to predict local species richness variation. Four conceptually different sampling procedures were evaluated.
Results  We showed that stochastic sampling processes predicted a substantial part (over 40%) of the observed variation in species richness, but left considerable variation unexplained. This remaining variation in species richness may be better understood as the result of alternative ecological processes. First, the sampling model explained more variation in species richness when the probability that a species colonises a new locality was assumed to increase with its niche width, suggesting that ecological differences between species matter when it comes to explaining macroecological patterns. Second, extinction risk was significantly lower for species inhabiting high-energy regions, suggesting that abundance–extinction processes play a significant role in shaping species richness patterns.
Main conclusions  We conclude that species–energy relationships may not simply be understood as a result of either ecological or random sampling processes, but more likely as a combination of both.  相似文献   

20.
There is a long tradition in ecology of studying models of biodiversity at equilibrium. These models, including the influential Neutral Theory of Biodiversity, have been successful at predicting major macroecological patterns, such as species abundance distributions. But they have failed to predict macroevolutionary patterns, such as those captured in phylogenetic trees. Here, we develop a model of biodiversity in which all individuals have identical demographic rates, metacommunity size is allowed to vary stochastically according to population dynamics, and speciation arises naturally from the accumulation of point mutations. We show that this model generates phylogenies matching those observed in nature if the metacommunity is out of equilibrium. We develop a likelihood inference framework that allows fitting our model to empirical phylogenies, and apply this framework to various mammalian families. Our results corroborate the hypothesis that biodiversity dynamics are out of equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号