首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Common Chuckwalla [ Sauromalus ater (=  obesus )] is a large, sexually dimorphic lizard with a flattened head that takes refuge from predators in rock crevices. Males use their relatively large heads to bite competing males during territorial fights and to restrain females during copulation. Flattened heads with an antipredator function (i.e. seeking refuge in crevices) and enlarged heads with intrasexual competition and reproductive functions suggest possible antagonism between selective pressures on head morphology in males. To examine this hypothesis, we performed a morphometric analysis and measured the bite-force performance of 49 adult chuckwallas. Males had disproportionately wider heads than females, but did not have deeper heads. Males bit with nearly four times the force of females, consistent with the notion of sexual selection for high bite force in males. Although constrained by crevice-wedging behaviour, head depth was a good predictor of bite force in both sexes. In males, however, osteological head width also was a good predictor of bite force. These results are consistent with the hypothesis that head shape in males is under antagonistic selective pressures, which may partly explain the pattern of head shape dimorphism. The disproportionately wide head of males may reflect anatomical modifications to enhance bite force in response to sexual selection in spite of presumed constraints on head shape for crevice-wedging behaviour  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 215–222.  相似文献   

2.
Differences between the sexes may arise because of differences in reproductive strategy, with females investing more in traits related to reproductive output and males investing more in traits related to resource holding capacity and territory defence. Sexual dimorphism is widespread in lizards and in many species males and females also differ in head shape. Males typically have bigger heads than females resulting in intersexual differences in bite force. Whereas most studies documenting differences in head dimensions between sexes use linear dimensions, the use of geometric morphometrics has been advocated as more appropriate to characterize such differences. This method may allow the characterization of local shape differences that may have functional consequences, and provides unbiased indicators of shape. Here, we explore whether the two approaches provide similar results in an analyses of head shape in Tupinambis merianae. The Argentine black and white tegu differs dramatically in body size, head size, and bite force between the sexes. However, whether the intersexual differences in bite force are simply the result of differences in head size or whether more subtle modifications (e.g., in muscle insertion areas) are involved remains currently unknown. Based on the crania and mandibles of 19 lizards with known bite force, we show intersexual differences in the shape of the cranium and mandible using both linear and geometric morphometric approaches. Although both types of analyses showed generally similar results for the mandible, this was not the case for the cranium. Geometric morphometric approaches provided better insights into the underlying functional relationships between the cranium and the jaw musculature, as illustrated by shape differences in muscle insertion areas not detected using linear morphometric data. J. Morphol. 275:1016–1026, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
In many species, sexual dimorphism increases with body size when males are the larger sex but decreases when females are the larger sex, a macro-evolutionary pattern known as Rensch''s rule (RR). Although empirical studies usually focus exclusively on body size, Rensch''s original proposal included sexual differences in other traits, such as ornaments and weapons. Here, we used a clade of harvestmen to investigate whether two traits follow RR: body size and length of the fourth pair of legs (legs IV), which are used as weapons in male–male fights. We found that males were slightly smaller than females and body size did not follow RR, whereas legs IV were much longer in males and followed RR. We propose that sexual selection might be stronger on legs IV length than on body size in males, and we discuss the potential role of condition dependence in the emergence of RR.  相似文献   

4.
The evolution and maintenance of sexual dimorphism has long been attributed to sexual selection. Niche divergence, however, serves as an alternative but rarely tested selective pressure also hypothesized to drive phenotypic disparity between males and females. We reconstructed ancestral social systems and diet and used Ornstein–Uhlenbeck (OU) modeling approaches to test whether niche divergence is stronger than sexual selection in driving the evolution of sexual dimorphism in cranial size and bite force across extant Musteloidea. We found that multipeak OU models favored different dietary regimes over social behavior and that the greatest degree of cranial size and bite force dimorphism were found in terrestrial carnivores. Because competition for terrestrial vertebrate prey is greater than other dietary groups, increased cranial size and bite force dimorphism reduces dietary competition between the sexes. In contrast, neither dietary regime nor social system influenced the evolution of sexual dimorphism in cranial shape. Furthermore, we found that the evolution of sexual dimorphism in bite force is influenced by the evolution of sexual dimorphism in cranial size rather than cranial shape. Overall, our results highlight niche divergence as an important mechanism that maintains the evolution of sexual dimorphism in musteloids.  相似文献   

5.
Both intra- and inter-sexual selection may crucially determine a male's fitness. Their interplay, which has rarely been experimentally investigated, determines a male's optimal reproductive strategy and thus is of fundamental importance to the understanding of a male's behaviour. Here we investigated the relative importance of intra- and inter-sexual selection for male fitness in the common lizard. We investigated which male traits predict a male's access to reproduction allowing for both selective pressures and comparing it with a staged mating experiment excluding all types of intra-sexual selection. We found that qualitatively better males were more likely to reproduce and that sexual selection was two times stronger when allowing for both selective pressures, suggesting that inter- and intra-sexual selection determines male fitness and confirming the existence of multi-factorial sexual selection. Consequently, to optimize fitness, males should trade their investment between the traits, which are important for inter- and intra-sexual selection.  相似文献   

6.
Despite interspecific differences in the absolute efficiency rate of copulatory thrusting in Poecilia reticulata, Phalloceros caudimaculatus, Heterandria formosa, Girardinus falcatus and Gambusia holbrooki small males had a significant advantage. These differences are discussed in the light of the interspecific differences in morphology and sexual behaviour. The results of the present study offer an alternative explanation for the pronounced reversed size dimorphism observed in this family of fishes. The greater efficiency of small males in achieving matings when females are unreceptive might also explain why genetically small males are maintained in natural populations of many poeciliids, in spite of the large size advantage in both intrasexual competition and female choice.  相似文献   

7.
Natural selection can influence the evolution of sexual dimorphism through selection for sex-specific ecomorphological adaptations. The role of natural selection in the evolution of sexual dimorphism, however, has received much less attention than that of sexual selection. We examined the relationship between habitat structure and both male and female morphology, and sexual dimorphism in size and shape, across 21 populations of dwarf chameleon (genus Bradypodion). Morphological variation in dwarf chameleons was strongly associated with quantitative, multivariate aspects of habitat structure and, in most cases, relationships were congruent between the sexes. However, we also found consistent relationships between habitat and sexual dimorphism. These resulted from both differences in magnitude of ecomorphological relationships that were otherwise congruent between the sexes, as well as in sex-specific ecomorphological adaptations. Our study provides evidence that natural selection plays an important role in the evolution of sexual dimorphism.  相似文献   

8.
Male-biased dimorphism in body size is usually attributed tosexual selection acting on males, through either male competitionor female choice. Brown antechinuses (Antechinus stuartii) aresexually dimorphic in size, and heavier males are known to siremore offspring in the wild. We investigated four possible mechanismsthat might explain this large-male reproductive advantage. Wetested if there is a female preference for large males, a femalepreference for dominant males, if larger males compete moreeffectively for mates, and if there is a survival advantagefor large males during the mating season. We established nestinggroups of males in captivity and conducted mate choice trialsin which males from nesting groups either could or could notinteract. We assessed male dominance rank and recorded survivaltimes after mating. Females did not prefer larger males directly.The results suggest that the other three mechanisms of sexualselection tested account for the large-male advantage: largemales competed more successfully for mates, so were sociallydominant; females rejected subordinates (males they saw losingtwice in contests to previous mates); and dominant males survivedfor longer after their first mating. Females judged male rankbased on direct observation of male competitive interactionsat the time of mating and apparently could not distinguish rankfrom male scent. Effects of size and dominance on male reproductivesuccess are not confounded by age because male antechinusesare semelparous.  相似文献   

9.
Measures of physiological performance capacity, such as bite force, form the functional basis of sexual selection. Information about fighting ability may be conveyed through a structural feature such as a rostrum (i.e. horn) or a colour signal and thereby help reduce costly conflict. We quantified sexual dimorphism in key traits likely to be the targets of sexual selection in Tennent's leaf‐nosed lizard (Ceratophora tennentii) from Sri Lanka, and examined their relationship to bite force and body condition. We found body length and bite force to be similar for males and females. However, head length was significantly greater in males and they had significantly more conspicuous throats and labials (chromatic contrast and luminance) than females. Males also had a proportionally larger rostrum, which we predicted could be an important source of information about male quality for both sexes. Rostrum length was correlated with throat chromatic contrast in males but not females. Nonetheless, the rostrum and aspects of coloration did not correlate with bite force or body condition as we predicted. We have no information on contest escalation in this species but if they rarely bite, as suggested by a lack of difference in bite force between males and females, then bite force and any associated signals would not be a target of selection. Finally, males and females had similar spectral reflectance of the mouth and tongue and both had a peak in the ultra‐violet, and were conspicuous to birds. Lizards only gaped their mouths during capture and not when threatened by a potential predator (hand waving). We hypothesize that conspicuous mouth colour may act as a deimatic signal, startling a potential predator, although this will need careful experimental testing in the future.  相似文献   

10.
Discovering the mechanisms by which communities of co‐existing species exist has proven to be one of the greatest challenges for evolutionary ecologists. A recent perspective emphasizes the role of functional traits, such as whole‐organism performance, as key limiting factors in the evolution of communities, yet few studies have examined this possibility. We examine how bite force and morphology influence the ability of ten lizard species in a single community to access insect prey, as defined by prey type and prey hardness. We gathered over 3 years of data from a desert lizard community comprised of ten species and found significant variation among species for bite force and prey hardness, as well as significant differences in performance and niche breadth for each species. In general, higher levels of absolute bite force broadens resource accessibility (sizes of prey), and does not generally result in a reduced ability to access smaller prey. For example, large lizard species that are hard biters can still consume soft prey. On the other hand, small lizard species that are weak biters are more limited in their ability to access hard prey, although the overall decline in resource accessibility is modest. Our findings highlight how functional traits can influence which species can access key resources within a community of similar species. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●● , ●●–●●.  相似文献   

11.
In crustacean species with precopulatory mate-guarding, sexual size dimorphism has most often been regarded as the consequence of a large male advantage in contest competition for access to females. However, large body size in males may also be favoured indirectly through scramble competition. This might partly be the case if the actual target of selection is a morphological character, closely correlated with body size, involved in the detection of receptive females. We studied sexual selection on body size and antennae length in natural populations of Asellus aquaticus, an isopod species with precopulatory mate guarding. In this species, males are larger than females and male pairing success is positively related to body size. However, males also have longer antennae, relative to body size, than females, suggesting that this character may also be favoured by sexual selection. We used multivariate analysis of selection to assess the relative influences of body size and antennae length in five different populations in the field. Selection gradients indicated that, overall, body size was a better predictor of male pairing success than antennae length, although some variation was observed between sites. We then manipulated male antennae length in a series of experiments conducted in the lab, and compared the pairing ability of males with short or long antennae. Males with short antennae were less likely to detect, orient to, and to pair with a receptive female compared with males with long antennae. We discuss the implications of our results for studies of male body size and sexual dimorphism in relation to sexual selection in crustaceans.  相似文献   

12.
In crustacean species with precopulatory mate-guarding, sexual size dimorphism has most often been regarded as the consequence of a large male advantage in contest competition for access to females. However, large body size in males may also be favoured indirectly through scramble competition. This might partly be the case if the actual target of selection is a morphological character, closely correlated with body size, involved in the detection of receptive females. We studied sexual selection on body size and antennae length in natural populations of Asellus aquaticus, an isopod species with precopulatory mate guarding. In this species, males are larger than females and male pairing success is positively related to body size. However, males also have longer antennae, relative to body size, than females, suggesting that this character may also be favoured by sexual selection. We used multivariate analysis of selection to assess the relative influences of body size and antennae length in five different populations in the field. Selection gradients indicated that overall body size was a better predictor of male pairing success than antennae length, although some variation was observed between sites. We then manipulated male antennae length in a series of experiments conducted in the laboratory, and compared the pairing ability of males with short or long antennae. Males with short antennae were less likely to detect, orient to and to pair with a receptive female compared to males with long antennae. We discuss the implications of our results for studies of male body size and sexual dimorphism in relation to sexual selection in crustaceans.  相似文献   

13.
Understanding the interaction between sexual and natural selection within variable environments is crucial to our understanding of evolutionary processes. The handicap principle predicts females will prefer males with exaggerated traits provided those traits are indicators of male quality to ensure direct or indirect female benefits. Spatial variability in ecological factors is expected to alter the balance between sexual and natural selection that defines the evolution of such traits. Male and female blackspotted topminnows (Fundulidae: Fundulus olivaceus) display prominent black dorsolateral spots that are variable in number across its broad range. We investigated variability in spot phenotypes at 117 sites across 13 river systems and asked if the trait was sexually dimorphic and positively correlated with measures of fitness (condition and gonadosomatic index [GSI]). Laboratory and mesocosm experiments assessed female mate choice and predation pressure on spot phenotypes. Environmental and community data collected at sampling locations were used to assess predictive models of spot density at the individual, site, and river system level. Greater number of spots was positively correlated with measures of fitness in males. Males with more spots were preferred by females and suffered greater mortality due to predation. Water clarity (turbidity) was the best predictor of spot density on the drainage scale, indicating that sexual and natural selection for the trait may be mediated by local light environments.  相似文献   

14.
15.
16.
Intralocus sexual conflict arises when selection favours alternative fitness optima in males and females. Unresolved conflict can create negative between‐sex genetic correlations for fitness, such that high‐fitness parents produce high‐fitness progeny of their same sex, but low‐fitness progeny of the opposite sex. This cost of sexual conflict could be mitigated if high‐fitness parents bias sex allocation to produce more offspring of their same sex. Previous studies of the brown anole lizard (Anolis sagrei) show that viability selection on body size is sexually antagonistic, favouring large males and smaller females. However, sexual conflict over body size may be partially mitigated by adaptive sex allocation: large males sire more sons than daughters, whereas small males sire more daughters than sons. We explored the evolutionary implications of these phenomena by assessing the additive genetic (co)variance of fitness within and between sexes in a wild population. We measured two components of fitness: viability of adults over the breeding season, and the number of their progeny that survived to sexual maturity, which includes components of parental reproductive success and offspring viability (RSV). Viability of parents was not correlated with adult viability of their sons or daughters. RSV was positively correlated between sires and their offspring, but not between dams and their offspring. Neither component of fitness was significantly heritable, and neither exhibited negative between‐sex genetic correlations that would indicate unresolved sexual conflict. Rather, our results are more consistent with predictions regarding adaptive sex allocation in that, as the number of sons produced by a sire increased, the adult viability of his male progeny increased.  相似文献   

17.
The existence of consistent individual differences in behavior has been shown in a number of species, and several studies have found observable sex differences in these behaviors, yet their evolutionary implications remain unclear. Understanding the evolutionary dynamics of behavioral traits requires knowledge of their genetic architectures and whether this architecture differs between the sexes. We conducted a quantitative genetic study in a sexually size‐dimorphic spider, Larinioides sclopetarius, which exhibits sex differences in adult lifestyles. We observed pedigreed spiders for aggression, activity, exploration, and boldness and used animal models to disentangle genetic and environmental influences on these behaviors. We detected trends toward (i) higher additive genetic variances in aggression, activity, and exploration in males than females, and (ii) difference in variances due to common environment/maternal effects, permanent environment and residual variance in aggression and activity with the first two variances being higher in males for both behaviors. We found no sex differences in the amount of genetic and environmental variance in boldness. The mean heritability estimates of aggression, activity, exploration, and boldness range from 0.039 to 0.222 with no sizeable differences between females and males. We note that the credible intervals of the estimates are large, implying a high degree of uncertainty, which disallow a robust conclusion of sex differences in the quantitative genetic estimates. However, the observed estimates suggest that sex differences in the quantitative genetic architecture of the behaviors cannot be ruled out. Notably, the present study suggests that genetic underpinnings of behaviors may differ between sexes and it thus underscores the importance of taking sex differences into account in quantitative genetic studies.  相似文献   

18.
In this paper, we examine allometric and sexual-selection explanations for interspecific differences in the amount of sexual dimorphism among 60 primate species. Based on evidence provided by statistical analyses, we reject Leutenegger and Cheverud’s [(1982). Int. J. Primatol.3:387-402] claim that body size alone is the major factor in the evolution of sexual dimorphism. The alternative proposed here is that sexual selection due to differences in the reproductive potential of males and females is the primary cause of sexual dimorphism. In addition, we propose that the overall size of a species determines whether the dimorphism will be expressed as size dimorphism,rather than in some other form.  相似文献   

19.
Among species with sexual size dimorphism (SSD), taxa in which males are the larger sex have increasing SSD with increasing body size, whereas in taxa in which females are the larger sex, SSD decreases with body size: Rensch's rule. We show in flying lizards, a clade of mostly female‐larger species, that SSD increases with body size, a pattern similar to that in clades with male‐biased SSD or more evenly mixed SSD. The observed pattern in Draco appears due to SSD increasing with evolutionary changes in male body size; specifically divergence in body size among species that are in sympatric congeneric assemblages. We suggest that increasing body size, resulting in decreased gliding performance, reduces the relative gliding cost of gravidity in females, and switches sexual selection in males away from a small‐male, gliding advantage and toward selection on large size and fighting ability as seen in many other lizards. Thus, selection for large females is likely greater than selection for large males at the smaller end of the body size continuum, whereas this relationship reverses for species at the larger end of the continuum. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 270–282.  相似文献   

20.
The spiny lizard Sceloporus grammicus (Squamata: Phrynosomatidae) is a small reptile from central México and the southern United States, occurring in a wide geographic area characterized by extensive variation in topographic and climatic regimes. Genetic variation among lineages from central México is substantial, though the extent to which this variation corresponds with life-history traits remains obscure. To address part of this puzzle, we studied a population of S. grammicus from Tepeapulco, Hidalgo, México. Male-biased sexual dimorphism was extensive in this population; males were larger than females overall, and expressed proportionately larger heads and longer limbs. Minimum size at sexual maturity was similar in the sexes (males: 43 mm; females: 42 mm). In contrast to other populations from the Central Plateau, reproductive activity of males and females was synchronous. Testicular recrudescence of adult males was initiated in October-November, and maximum testis size maintained from December to July. Female reproductive activity showed no clear seasonal pattern: females had vitellogenic follicles from October to July, and pregnant females were found throughout the year. Female body size was not related to litter size. Neither male nor female gonadal mass was correlated with any abiotic environmental variable examined. Differences in reproductive characteristics among populations of S. grammicus might be indicative of plasticity in response to local environmental conditions, local adaptation, or complex gene × environment interactions. We consider these results in the context of previously studied populations of S. grammicus from the Central Plateau and elsewhere, and propose directions for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号