首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Everted membrane vesicles of Pseudomonas aeruginosa PAO1 harboring plasmid pCRO616, expressing the ChrA chromate resistance protein, accumulated four times more (51)CrO(4)(2-) than vesicles from plasmidless cells, indicating that a chromate efflux system functions in the resistant strain. Chromate uptake showed saturation kinetics with an apparent K(m) of 0.12 mM chromate and a V(max) of 0. 5 nmol of chromate/min per mg of protein. Uptake of chromate by vesicles was dependent on NADH oxidation and was abolished by energy inhibitors and by the chromate analog sulfate. The mechanism of resistance to chromate determined by ChrA appears to be based on the active efflux of chromate driven by the membrane potential.  相似文献   

2.
Resistance to toxic hexavalent chromium (chromate: CrO4(2)) in Enterobacter cloacae strain HO1, isolated from an activated sludge sample, was investigated under aerobic and anaerobic conditions. Decreased uptake of 51CrO4(2-) in E. cloacae strain HO1 was observed under aerobic conditions, when compared with a standard laboratory E. cloacae strain (IAM 1624). Under anaerobic conditions E. cloacae strain HO1 was able to reduce hexavalent chromium to the less toxic trivalent form. When E. clocacae strain HO1 was grown with nitrate anaerobically, the cells were observed to lose simultaneously their chromate-reducing ability and chromate-resistance under anaerobic conditions.  相似文献   

3.
Two distinctive sodium-dependent phosphate transport systems have been identified in early and late proximal tubules; a high-capacity process located only in outer cortical tissue, and a high affinity present in both outer cortical and outer medullary brush-border membranes (Km 0.1-0.25 mM). A third, sodium-independent, pH gradient-stimulated system (Vmax 4.7 +/- 0.3 nmol.mg-1.min-1, Km 0.15 +/- 0.002 mM) is present in the outer medulla, but absent in outer cortex. Brush-border vesicles were prepared from outer cortical and outer medullary tissue of pigs maintained on low (less than 0.05%), normal (0.4%), or high (4%) phosphate diets. Sodium-dependent phosphate uptake of the high-capacity system decreased (Vmax, 9.4 to 2.2 nmol.mg-1.min-1) from low to high phosphate diet, whereas uptake rates decreased about 50% in the high-affinity system. There were no changes in the respective Km values. The pH gradient-stimulated uptake also decreased (Vmax, 6.9 to 3.0 nmol.mg-1.min-1) with no change in mean Km value (0.15 +/- 0.001 mM) with dietary manipulation. Administration of 1 U parathyroid hormone prior to study resulted in a decrease in sodium-dependent uptake by 40-50% and in pH-dependent uptake (36%) with no change in the respective Km values. In conclusion, the antecedent dietary phosphate intake and parathyroid hormone administration appropriately alters phosphate uptake across the brush-border membrane of all three systems, sodium-dependent and pH gradient-stimulated phosphate transport.  相似文献   

4.
Phytoextraction is a technique using a hyperaccumulator to remove heavy metals from soil. The efficiency of heavy metal uptake can be enhanced by the inoculation of endophytes. In this study, we isolated and identified 23 endophytes from Chromolaena odorata, a cadmium (Cd) hyperaccumulator that consisted of 19 bacteria, 2 actinomycetes and 2 fungi. All bacteria and fungi could produce at least 1 plant growth promoting factors. However, only 4 bacterial isolates; Paenibacillus sp. SB12, Bacillus sp. SB31, Bacillus sp. LB51, and Alcaligenes sp. RB54 showed the highest minimum inhibitory concentration (MIC) value (2.9 mM), followed by Exiguobacterium sp.RB51 (1.7 mM). Then, these 5 high-MIC bacteria and 1 low-MIC bacterium, Bacillus sp. LB15 were inoculated onto sunflower grown in soil supplemented with 250 mg/kg of Cd. After 60 days, all inoculated plants accumulated significantly higher Cd concentration than the non-inoculated counterparts, and those inoculated with strain LB51 showed the highest Cd accumulation and growth. Interestingly, strain LB15 with low MIC also enhanced Cd accumulation in plants. The results suggest that these bacteria, particularly strain LB51, could be applied to improve Cd accumulation in plants, and that bacteria with low MIC also have the potential to enhance the efficiency of phytoextraction.  相似文献   

5.
Arginine and methionine transport by Aspergillus nidulans mycelium was investigated. A single uptake system is responsible for the transport of arginine, lysine and ornithine. Transport is energy-dependent and specific for these basic amino acids. The Km value for arginine is 1 X 10(-5) M, and Vmax is 2-8 nmol/mg dry wt/min; Km for lysine is 8 X 10(-6) M; Kt for lysine as inhibitor of arginine uptake is 12 muM, and Ki for ornithine is mM. On minimal medium, methionine is transported with a Km of 0-I mM and Vmax about I nmol/mg dry wt/min; transport is inhibited by azide. Neutral amnio acids such as serine, phenylalanine and leucine are probably transported by the same system, as indicated by their inhibition of methionine uptake and the existence of a mutant specifically impaired in their transport. The recessive mutant nap3, unable to transport neutral amino acids, was isolated as resistant to selenomethionine and p-fluorophenylanine. This mutant has unchanged transport of methionine by general and specific sulphur-regulated permeases.  相似文献   

6.
The intracellular concentration of inorganic 35SO4 in Monochrysis lutheri cells exposed to 0.513 mM Na235SO4 for up to 6-hr remained constant at about 0.038 mM. The exchange rate of this 35SO4 with the external unlabelled sulphate was negligible compared to the rate of influx across the plasmalemma (0.032 mu moles/g cells/hr). The flux of free 35SO4 to organic 35S was 0.029 mu moles/g cells/hr. Assuming an internal electrical potential in the cells of -70 mV, this intracellular concentration of inorganic 35SO4 was well in excess of that obtainable by passive diffusion as calculated from the Nernst equation. These results indicate that sulphate is accumulated by an active mechanism rather than by facilitated diffusion. Sulphate uptake appears to occur via a carrier-mediated membrane transport system which conforms to Michaelis-Menten type saturation kinetics with a Km of 3.2 X 10(-5) M and Vmax of 7.9 X 10(-5) mu moles sulphate/hr/10(5) cells. Uptake was dependent on a source of energy since the metabolic inhibitor CCCP almost completely inhibited uptake under both light and dark conditions and DCMU caused a 50% decrease in uptake under light conditions. Under dark conditions, uptake remained at about 80% of that observed under light conditions and was little affected by DCMU, indicating that the energy for uptake could be supplied by either photosynthesis or respiration. A charge and size recognition site in the cell is implied by the finding that sulphate uptake was inhibited by chromate and selenate but not by tungstate, molybdate, nitrate or phosphate. Chromate did not inhibit photosynthesis. Cysteine and methionine added to the culture medium were apparently capable of exerting inhibition of sulphate uptake in both unstarved and sulphate-starved cells. Cycloheximide slightly inhibited sulphate uptake over an 8-hr period indicating, either a slow rate of entry of the inhibitor into the cells or a slow turnover of the protein(s) associated with sulphate transport.  相似文献   

7.
Naphthalene uptake by a Pseudomonas fluorescens isolate   总被引:1,自引:0,他引:1  
The uptake of naphthalene has been investigated in the metabolizing cells of Pseudomonas fluorescens utilizing [1-14C]naphthalene. The uptake displayed an affinity constant (Kt) of 11 microM and a maximal velocity (Vmax) of 17 nmol.h-1.mg-1 cellular dry weight. Naphthalene uptake was not observed in a mutant strain, TG-5, which was unable to utilize naphthalene as a sole source of carbon for growth. Uptake was significantly inhibited (approximately 90%) by the presence of growth-inhibiting levels of either azide or 2,4-dinitrophenol and was sensitive to the presence of structural analogues of naphthalene. The intracellular levels of ATP were not significantly reduced by the presence of either azide or 2,4-dinitrophenol. The presence of alpha-naphthol was found to noncompetitively inhibit naphthalene uptake, displaying a Ki of 0.041 microM. It is concluded that the first step in the utilization of naphthalene by Pseudomonas fluorescens is its transport into the cell by a specific energy-linked transport system.  相似文献   

8.
Stable chromium(VI)-sensitive and -tolerant mutants were obtained by induced mutagenesis of Schizosaccharomyces pombe lysine and leucine auxotrophic heterothallic strains 6chr+ and 9chr+. Eleven of them were selected for further studies. Fast transport of 51CrO4(2-) was detected in a representative sensitive mutant, chr-51S, while the tolerant mutant chr1-66T and the parental strain 6chr+ exhibited significantly lower 51CrO4(2-) uptake. The segregation of tetrads of three selected CrVI-tolerant mutants, chr1-66T, chr1-14T and chr2-04T, strongly indicated that tolerance was determined by single mutations. Random spore analysis proved that the mutations of chr1-66T and chr1-14T were allelic and the mutation of mutant chr2-04T was not allelic with the mutation of chr1-66T. Recombinants carrying the ura4D18 selective marker were created for transformation experiments. Two of them (chr1-661T and chr2-046T) can be used to clone and identify the genes responsible for their CrVI tolerance phenotype.  相似文献   

9.
A system for transport of coenzyme M, 2-mercaptoethanesulfonic acid (HS--CoM), in Methanobacterium ruminatium strain M1 required energy, showed saturation kinetics, and concentrated the coenzyme against a gradient. The process was sensitive to temperature and was maximally active at pH 7.1. Cells took up HS--CoM at a linear rate, with a Vmax of 312 pmol/min per mg (dry weight) and an apparent Km of 73 nM. An intracellular pool of up to 5 mM accumulated which was not exchangeable with the medium. Uptake required both hydrogen and carbon dioxide; it was inhibited by O2. Bromoethanesulfonic acid (BrCH2CH2SO3-), a potent inhibitor of methanogenesis in cell-free extracts, inhibited both uptake and methane production. Results of inhibitor studies with derivatives and analogs of the coenzyme showed that the specificity of the carrier is restricted to a limited range of thioether, thioester, and thiocarbonate derivatives. 2-(Methylthio)ethanesulfonic acid (CH3--S--CoM) showed an apparent Ki for HS--CoM uptake of 15 nM, being taken up itself with a Vmax of 320 pmol/min per mg (dry weight) and an apparent Km of 50 nM. An analysis of intracellular pools after HS--CoM uptake indicated that the predominant forms are a heterodisulfide of unknown composition and CH3--S--CoM.  相似文献   

10.
The cellular location of beta-1,4-glucosidase activity from, as well as the transport of glucose and cellobiose into, cells of Clavispora lusitaniae NRRL Y-5394 and Candida wickerhamii NRRL Y-2563 was investigated. The beta-glucosidase from Cl. lusitaniae appeared to be a soluble cytoplasmic enzyme. This yeast transported both glucose and cellobiose when grown in medium containing cellobiose as the sole carbon source. Glucose, but not cellobiose, uptake was observed for cells grown on glucose. The Ks and Vmax values for cellobiose transport were different when Cl. lusitaniae was cultured either aerobically (0.11 mM, 6.28 nmol.min-1.mg-1) or anaerobically (0.25 mM, 3.88 nmol-1.min-1.mg-1). The Ks and Vmax values for glucose transport (0.23-1.10 mM and 17.2-33.9 nmol.min-1.mg-1) also differed with the various growth conditions. The beta-glucosidase from C. wickerhamii was extracytoplasmically located. This yeast transported glucose, but not cellobiose, under all growth conditions tested. The Ks for glucose uptake was 0.13-0.28 mM when C. wickerhamii was cultured on cellobiose and 0.25-0.30 mM when cultured on glucose. The Vmax values for glucose uptake were greater for cells cultured on cellobiose (35.0-37.9 nmol.min-1.mg-1) than for cells cultured on glucose (15.6-21.4 nmol.min-1.mg-1). Cellobiose did not inhibit glucose uptake in either yeast. Glucose partially inhibited cellobiose transport in C. lusitaniae, but only if the yeast was grown aerobically. In both yeasts, sugar transport was sensitive to carbonyl cyanide p-trifluoromethoxyphenylhydrazone and 1799, but insensitive to valinomycin.  相似文献   

11.
Growth of Escherichia coli strain MM6-13 (ptsI suc lacI sup), which as a suppressor of the succinate-negative phenotype, was inhibited by lactose. Cells growing in yeast extract-tryptone-sodium chloride medium (LB broth) were lysed upon the addition of lactose. In Casamino Acids-salts medium, lactose inhibited growth, but due to the high K+ content no lysis occurred. Lysis required high levels of beta-galctosidase and lactose transport activity. MM6, the parental strain of MM6-13, has lower levels of both of these activities and was resistant to lysis under these conditions. When MM6 was grown in LB broth with exogenous cyclic adenosine monophosphate, however, beta-galactosidase and lactose transport activities were greatly increased, and lysis occurred upon the addition of lactose. Resting cells of both MM6 and MM6-13 were lysed by lactose in buffers containing suitable ions. In the presence of MG2+, lysis was enhanced by 5 mM KCl and 100 mM NaCl. Higher slat concentrations (50 mM KCl or 200 mM NaCl) provided partial protection from lysis. In the absence of Mg2+, lysis occurred without KCl. Lactose-dependent lysis occurred in buffers containing anions such as sulafte, chloride, phosphate, or citrate; however, thiocyanate or acetate protected the cells from lysis. These data indicate that both cations and anions, as well as the levels of lactose transport and beta-galactosidase activity, are important in lysis.  相似文献   

12.
Taurine uptake by isolated alveolar macrophages and type II cells   总被引:1,自引:0,他引:1  
Evidence suggests that taurine may protect cellular membranes against oxidants (Gordon et al., Am. J. Pathol. 125: 585-600, 1986). The present study was conducted to determine if alveolar macrophages and type II cells (which are relatively resistant to oxidant injury) possess a specialized transport system for the accumulation of taurine. The results indicate that both cell types contain more taurine than plasma or whole lung. Taurine influx exhibited both carrier-mediated and simple diffusion components. Carrier-mediated uptake displayed saturation kinetics (Km = 26.3 and 22.5 microM, while Vmax = 33.2 and 4.9 pmol.10(6) cells-1.min-1 for macrophages and type II cells, respectively). Taurine uptake was dependent on extracellular sodium and inhibited by metabolic inhibitors or ouabain. Total taurine uptake by type II cells was lower than that of alveolar macrophages. However, type II cells exhibited a higher intercellular concentration of taurine (14 vs. 4 mM) because of a higher ratio of carrier-mediated uptake to leakage than with alveolar macrophages. It is possible that this specialized transport system for taurine uptake may lend these cells resistant to oxidant injury.  相似文献   

13.
We investigated the uptake of biphenyl by the psychrotolerant, polychlorinated biphenyl (PCB)-degrader, Pseudomonas sp. strain Cam-1 and the mesophilic PCB-degrader, Burkholderia sp. strain LB400. The effects of growth substrates, metabolic inhibitors, and temperature on [14C]biphenyl uptake were studied. Biphenyl uptake by both strains was induced by growth on biphenyl, and was inhibited by dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), which are metabolic uncouplers. The Vmax and Km for biphenyl uptake by Cam-1 at 22 degrees C were 5.4 +/- 1.7 nmol x min(-1) x (mg of cell protein)(-1) and 83.1 +/- 15.9 micromol x L(-1), respectively. The Vmax and Km for biphenyl uptake by LB400 at 22 degrees C were 3.2 +/- 0.3 nmol x min(-1) x (mg of cell protein(-1)) and 51.5 +/- 9.6 micromol x L(-1), respectively. At 15 degrees C, the maximum rate for biphenyl uptake by Cam-1 and LB400 was 3.1 +/- 0.3 nmol x min(-1) x (mg of cell protein)(-1) and 0.89 +/- 0.1 nmol x min(-1) x (mg of cell protein)(-1), respectively. Thus, the maximum rate for biphenyl uptake by Cam-1 at 15 degrees C was more than 3 times higher than that for LB400.  相似文献   

14.
A transport system for coenzyme M (2-mercaptoethanesulfonic acid [HS-CoM]) and methylcoenzyme M [(2-(methylthio)ethanesulfonic acid (CH3-S-CoM)] in Methanococcus voltae required energy, showed saturation kinetics, and concentrated both forms of coenzyme M against a concentration gradient. Transport required hydrogen and carbon dioxide for maximal uptake. CH3-S-CoM uptake was inhibited by N-ethylmaleimide and monensin. Both HS-CoM and CH3-S-CoM uptake showed sodium dependence. In wild-type M. voltae, HS-CoM uptake was concentration dependent, with a Vmax of 960 pmol/min per mg of protein and an apparent Km of 61 microM. Uptake of CH3-S-CoM showed a Vmax of 88 pmol/min per mg of protein and a Km of 53 microM. A mutant of M. voltae resistant to the coenzyme M analog 2-bromoethanesulfonic acid (BES) showed no uptake of CH3-S-CoM but accumulated HS-CoM at the wild-type rate. While the higher-affinity uptake system was specific for HS-CoM, the lower-affinity system mediated uptake of HS-CoM, CH3-S-CoM, and BES. Analysis of the intracellular coenzyme M pools in metabolizing cells showed an intracellular HS-CoM concentration of 14.8 mM and CH3-S-CoM concentration of 0.21 mM.  相似文献   

15.
Regulation of A system amino acid transport was studied in primary cultures of the R3230AC mammary adenocarcinoma. Higher rates of carrier-mediated Na+-dependent proline transport, vc, was decreased and was attributed to a two-fold decrease in Vmax and a two-fold increase in Km. When compared to cells grown in standard media (Eagle's minimal essential medium, MEM), cells grown in media supplemented with A system substrates (alanine, serine, glycine, and proline) demonstrated adaptive decreases in proline transport; the decrease was due to two-fold reduction in Vmax, with no change in Km for proline. Even in the presence of preferred substrates for the A system, a density-dependent decrease in proline transport was manifested. Both fast- and slow-growing cultures maintained in MEM exhibited rapid increases in proline transport when switched to buffers devoid of amino acids; two-fold increases in Vmax were seen within 4 hr, but Km was unchanged. This starvation-induced adaptation was completely prevented by inclusion in the buffer of 10 mM proline, 0.1 mM -(methylamino)-isobutyric acid (MetAIB) or 10 mM serine, whereas inclusion of the poorer A system substrate, phenylalanine (10 mM), had no effect. The effects of MetAIB to prevent starvation-induced increases in proline transport were dose-related, rapid, and reversible. Amino acid starvation-induced increases in proline transport were partially blocked by cycloheximide or actinomycin D. Data were obtained demonstrating a temporal relationship between increasing intracellular [proline] and decreasing vc for proline uptake. In addition, efflux of proline from preloaded cells preceded the increase in initial rates of proline entry. Taken together, we concluded that: (1) A system transport in primary cultures of this mammary adenocarcinoma is regulated by cell density as well as by availability of A system substrates, but these two types of regulation are kinetically distinct; and (2) starvation-induced enhancement of proline transport appears to be due to release from transinhibition, but may also involve a derepression-repression type of mechanism.  相似文献   

16.
Transport of the antifolate cancer drug methotrexate was studied in vesicles isolated from the basolateral membrane of rat liver. Transport of methotrexate by basolateral membrane vesicles (BLMVs) was mostly via uptake into an osmotically active intravesicular space, with some binding (approximately 9%), as shown by initial uptake studies and by varying medium osmolarity with increasing concentrations of sucrose. Methotrexate transport was linear for the first 20 s of incubation. Transport was not affected by imposition of a Na+ gradient across the vesicular membrane. Transport of methotrexate displayed a broad pH optimum: at an intravesicular pH of 7.5, the initial rate of uptake was not significantly different at extravesicular pH values ranging from 5.5 to 7.5, but uptake was less at extravesicular pH of 5.0 or 8.0. Methotrexate transport was saturable: Km = 0.15 +/- 0.05 microM and Vmax = 11.4 +/- 1.1 pmol 10 s-1 mg-1 protein. Methotrexate uptake into BLMVs was not inhibited by 5-methyltetrahydrofolate nor by 5-formyltetrahydrofolate but was weakly inhibited by folic acid in a concentration-dependent manner. Uptake was also inhibited by anion-exchange inhibitor 4,4'-diisothio-cyanostilbene-2,2'-disulfonic acid (DIDS), and by the structurally unrelated anions ATP, ADP, Cl-, SO4(2-), and oxalate2-. Adenosine (no negative charge) had no effect on transport. When vesicles were preloaded with anions (ADP, SO4(2-), oxalate2-) such that an anion gradient existed from the intra- to the extravesicular compartment, and methotrexate uptake was measured, no stimulation of uptake was seen. Methotrexate uptake into rat liver BLMVs was electrogenic as shown by stimulation of the initial rate of uptake by a valinomycin-imposed K+ diffusion potential across the vesicular membrane. These results suggest that methotrexate is transported into the hepatocyte across the basolateral membrane by an electrogenic, multispecific anion carrier system.  相似文献   

17.
Sulfate transport by rat liver lysosomes   总被引:2,自引:0,他引:2  
Sulfate transport was examined using membrane vesicles (pH 7.0 inside) prepared from rat liver lysosomes. Sulfate uptake was dependent upon external pH with increased uptake at lower buffer pH. The Km for uptake was 160 microM at pH 5.0 while at pH 7.0, a lower affinity system with a Km of 1.4 mM was present. The protonophore carbonyl cyanide m-chlorophenylhydrazone increased uptake at pH 5.0 while valinomycin/KCl had no effect. In contrast, at pH 7.0, valinomycin-induced changes in membrane potential stimulated uptake. Countertransport of sulfate at pH 7.0 was inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene, N-(4-azido-2-nitrophenyl)-2-aminoethanesulfonic acid, and a variety of anions: SO4(2-) greater than MoO4(2-) greater than Cl- greater than HPO4- greater than HCO3-. Trans-stimulation of sulfate uptake at pH 7.0 was observed with MoO4(2-) and, to a lesser extent, with S2O3(2-) while Cl-, HPO4-, and HCO3- had little effect. However, chloride loading of vesicles resulted in marked stimulation of sulfate uptake at pH 5.0. It appears that sulfate and protons exit lysosomes in exchange for chloride by a specific, pH-regulated anion transport system.  相似文献   

18.
The chrA gene of Pseudomonas aeruginosa plasmid pUM505 encodes the hydrophobic protein ChrA, which confers resistance to chromate by the energy-dependent efflux of chromate ions. Chromate-sensitive mutants were isolated by in vivo random mutagenesis. Transport experiments with cell suspensions of selected mutants showed that 51CrO4(2-) extrusion was drastically lowered as compared to suspensions of the strain with the wild-type plasmid, confirming that the mutations affected a chromate efflux system. DNA sequence analysis showed that most point mutations affected amino acids clustered in the N-terminal half of ChrA, altering either cytoplasmic regions or transmembrane segments, and replaced residues moderately to highly conserved in ChrA homologs. PhoA and LacZ translational fusions were used to confirm the membrane topology at the N-terminal half of the ChrA protein.  相似文献   

19.
Abstract Thermoanaerobacter thermohydrosulfuricus Rt8.B1 catabolized xylose by the pentose phosphate pathway, and xylose isomerase and xylulokinase were inducible. The uptake of xylose was by two low-affinity, inducible systems. Both systems were resistant to the protonophore, tetrachlorosalicylanilide, the F1F0-ATPase inhibitor, N , N -dicyclohexylcarboiimide, and the sodium/proton antiporter, monensin. The high capacity system (100 nmol min−1 (mg protein)−1) was only expressed when the bacterium was grown with a high concentration of xylose (50 mM). It took more than 60 mM xylose to saturate the high capacity system. When T. thermohydrosulfuricus was grown with a low concentration of xylose (5 mM), xylose uptake was saturated by as little as 10 mM xylose (18 nmol min−1 (mg protein)−1). Cells grown with 50 mM xylose could not transport glucose, and high capacity xylose transport was not inhibited by glucose or non-metabolizable glucose analogues. Cells grown with 5 mM xylose transported glucose at a rapid rate (30 nmol min−1 (mg protein)−1), and low capacity xylose uptake was competitively inhibited by either glucose or 2-deoxy-glucose. Because the glucose uptake of cells grown on 5 mM xylose was competitively inhibited by xylose, it appeared that the low capacity xylose uptake system was a glucose/xylose carrier.  相似文献   

20.
A method for the selection and isolation of hexose transport mutants in undifferentiated rat myoblast L6 cells is reported; 2-deoxy-D-glucose (2-DOG)-and 2-deoxy-2-fluoro-D-glucose (2FG)-resistant mutants were selected after mutagenization of L6 cells with ethyl methanesulfonate. Of these, D18 and D23 (selected with 0.1 mM 2-DOG) and F72 and F76 (selected with 0.1 mM 2FG) exhibited the lowest hexose transport activity. Uptake of 0.06 mM 2-DOG, 2FG, or 3-O-methyl-D-glucose (3-OMG) by mutants grown in fructose medium supplemented with 0.05 mM 2FG was about four- to five-fold lower than the parental L6 cells. These mutants contain normal levels of ATP and glycolytic enzyme activities. They also exhibit normal transport activities for alpha-aminoisobutyric acid and fructose. Furthermore, hexose transport was observed to be decreased in plasma membrane vesicles prepared from these mutants. Kinetic analysis of 2-DOG and 3-OMG transport in mutant F72 demonstrated that the Vmax for 2-DOG uptake was significantly reduced, whereas the Vmax for 3-OMG transport was not affected. In all cases, the affinity for these hexose analogues was unaffected. In addition mutant F72 was found to be only slightly affected by treatment with various energy inhibitors and sulfhydryl reagents. The results suggest that this mutant is defective in, or has low levels of, a plasma membrane component(s) involved in the high-affinity hexose transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号