首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sister chromatids are held together by the multisubunit cohesin complex, which contains two SMC (Smc1 and Smc3) and two non-SMC (Scc1 and Scc3) proteins. The crystal structure of a bacterial SMC "hinge" region along with EM studies and biochemical experiments on yeast Smc1 and Smc3 proteins show that SMC protamers fold up individually into rod-shaped molecules. A 45 nm long intramolecular coiled coil separates the hinge region from the ATPase-containing "head" domain. Smc1 and Smc3 bind to each other via heterotypic interactions between their hinges to form a V-shaped heterodimer. The two heads of the V-shaped dimer are connected by different ends of the cleavable Scc1 subunit. Cohesin therefore forms a large proteinaceous loop within which sister chromatids might be entrapped after DNA replication.  相似文献   

2.
Kim JS  Shin DH  Pufan R  Huang C  Yokota H  Kim R  Kim SH 《Proteins》2006,62(2):322-328
Structural maintenance of chromosome (SMC) proteins are essential in chromosome condensation and interact with non-SMC proteins in eukaryotes and with segregation and condensation proteins (ScpA and ScpB) in prokaryotes. The highly conserved gene in Chlorobium tepidum gi 21646405 encodes ScpB (ScpB_ChTe). The high resolution crystal structure of ScpB_ChTe shows that the monomeric structure consists of two similarly shaped globular domains composed of three helices sided by beta-strands [a winged helix-turn-helix (HTH)], a motif observed in the C-terminal domain of Scc1, a functionally related eukaryotic ScpA homolog, as well as in many DNA binding proteins.  相似文献   

3.
Cohesin is a multisubunit complex that mediates sister-chromatid cohesion. Its Smc1 and Smc3 subunits possess ABC-like ATPases at one end of 50 nm long coiled coils. At the other ends are pseudosymmetrical hinge domains that interact to create V-shaped Smc1/Smc3 heterodimers. N- and C-terminal domains within cohesin's kleisin subunit Scc1 bind to Smc3 and Smc1 ATPase heads respectively, thereby creating a huge tripartite ring. It has been suggested that cohesin associates with chromosomes by trapping DNA within its ring. Opening of the ring due to cleavage of Scc1 by separase destroys sister-chromatid cohesion and triggers anaphase. We show that cohesin's hinges are not merely dimerization domains. They are essential for cohesin's association with chromosomes, which is blocked by artificially holding hinge domains together but not by preventing Scc1's dissociation from SMC ATPase heads. Our results suggest that entry of DNA into cohesin's ring requires transient dissociation of Smc1 and Smc3 hinge domains.  相似文献   

4.
Jones S  Sgouros J 《Genome biology》2001,2(3):research0009.1-research000912

Background  

Cohesin is a macromolecular complex that links sister chromatids together at the metaphase plate during mitosis. The links are formed during DNA replication and destroyed during the metaphase-to-anaphase transition. In budding yeast, the 14S cohesin complex comprises at least two classes of SMC (structural maintenance of chromosomes) proteins - Smc1 and Smc3 - and two SCC (sister-chromatid cohesion) proteins - Scc1 and Scc3. The exact function of these proteins is unknown.  相似文献   

5.
6.
The Structural Maintenance of Chromosome (SMC) complex, termed cohesin, is essential for sister chromatid cohesion. Cohesin is also important for chromosome condensation, DNA repair, and gene expression. Cohesin is comprised of Scc3, Mcd1, Smc1, and Smc3. Scc3 also binds Pds5 and Wpl1, cohesin-associated proteins that regulate cohesin function, and to the Scc2/4 cohesin loader. We mutagenized SCC3 to elucidate its role in cohesin function. A 5 amino acid insertion after Scc3 residue I358, or a missense mutation of residue D373 in the adjacent stromalin conservative domain (SCD) induce inviability and defects in both cohesion and cohesin binding to chromosomes. The I358 and D373 mutants abrogate Scc3 binding to Mcd1. These results define an Scc3 region extending from I358 through the SCD required for binding Mcd1, cohesin localization to chromosomes and cohesion. Scc3 binding to the cohesin loader, Pds5 and Wpl1 are unaffected in I358 mutant and the loader still binds the cohesin core trimer (Mcd1, Smc1 and Smc3). Thus, Scc3 plays a critical role in cohesin binding to chromosomes and cohesion at a step distinct from loader binding to the cohesin trimer. We show that residues Y371 and K372 within the SCD are critical for viability and chromosome condensation but dispensable for cohesion. However, scc3 Y371A and scc3 K372A bind normally to Mcd1. These alleles also provide evidence that Scc3 has distinct mechanisms of cohesin loading to different loci. The cohesion-competence, condensation-incompetence of Y371 and K372 mutants suggests that cohesin has at least one activity required specifically for condensation.  相似文献   

7.
BACKGROUND: Cohesin, a multisubunit protein complex conserved from yeast to humans, holds sister chromatids together from the onset of replication to their separation during anaphase. Cohesin consists of four core subunits, namely Smc1, Smc3, Scc1, and Scc3. Smc1 and Smc3 proteins are characterized by 50-nm-long anti-parallel coiled coils flanked by a globular hinge domain and an ABC-like ATPase head domain. Whereas Smc1 and Smc3 heterodimerize via their hinge domains, the kleisin subunit Scc1 connects their ATPase heads, and this results in the formation of a large ring. Biochemical studies suggest that cohesin might trap sister chromatids within its ring, and genetic evidence suggests that ATP hydrolysis is required for the stable association of cohesin with chromosomes. However, the precise role of the ATPase domains remains enigmatic. RESULTS: Characterization of cohesin's ATPase activity suggests that hydrolysis depends on the binding of ATP to both Smc1 and Smc3 heads. However, ATP hydrolysis at the two active sites is not per se cooperative. We show that the C-terminal winged-helix domain of Scc1 stimulates the ATPase activity of the Smc1/Smc3 heterodimer by promoting ATP binding to Smc1's head. In contrast, we do not detect any effect of Scc1's N-terminal domain on Smc1/Smc3 ATPase activity. CONCLUSIONS: Our studies reveal that Scc1 not only connects the Smc1 and Smc3 ATPase heads but also regulates their ATPase activity.  相似文献   

8.
The C-terminal domains of yeast structural maintenance of chromosomes (SMC) proteins were previously shown to bind double-stranded DNA, which generated the idea of the antiparallel SMC heterodimer, such as the SMC1/3 dimer, bridging two DNA molecules. Analysis of bovine SMC1 and SMC3 protein domains now reveals that not only the C-terminal domains, but also the coiled-coil region, binds DNA, while the N terminus is inactive. Duplex DNA and DNA molecules with secondary structures are highly preferred substrates for both the C-terminal and coiled-coil domains. Contrasting other cruciform DNA-binding proteins like HMG1, the SMC3 C-terminal and coiled-coil domains do not bend DNA, but rather prevent bending in ring closure assays. Phosphatase, exonuclease, and ligase assays showed that neither domain renders DNA ends inaccessible for other enzymes. These observations allow modifications of models for SMC-DNA interactions.  相似文献   

9.
Cohesin, a hetero-tetrameric complex of SMC1, SMC3, Rad21 and Scc3, associates with chromatin after mitosis and holds sister chromatids together following DNA replication. Following DNA damage, cohesin accumulates at and promotes the repair of DNA double-strand breaks. In addition, phosphorylation of the SMC1/3 subunits contributes to DNA damage-induced cell cycle checkpoint regulation. The aim of this study was to determine the regulation and consequences of SMC1/3 phosphorylation as part of the cohesin complex. We show here that the ATM-dependent phosphorylation of SMC1 and SMC3 is mediated by H2AX, 53BP1 and MDC1. Depletion of RAD21 abolishes these phosphorylations, indicating that only the fully assembled complex is phosphorylated. Comparison of wild type SMC1 and SMC1S966A in fluorescence recovery after photo-bleaching experiments shows that phosphorylation of SMC1 is required for an increased mobility after DNA damage in G2-phase cells, suggesting that ATM-dependent phosphorylation facilitates mobilization of the cohesin complex after DNA damage.  相似文献   

10.
The cohesin multiprotein complex containing SMC1, SMC3, Scc3 (SA), and Scc1 (Rad21) is required for sister chromatid cohesion in eukaryotes. Although metazoan cohesin associates with chromosomes and was shown to function in the establishment of sister chromatid cohesion during interphase, the majority of cohesin was found to be off chromosomes and reside in the cytoplasm in metaphase. Despite its dissociation from chromosomes, however, microinjection of an antibody against human SMC1 led to disorganization of the metaphase plate and cell cycle arrest, indicating that human cohesin still plays an important role in metaphase. To address the mitotic function of human cohesin, the subcellular localization of cohesin components was reexamined in human cells. Interestingly, we found that cohesin localizes to the spindle poles during mitosis and interacts with NuMA, a spindle pole-associated factor required for mitotic spindle organization. The interaction with NuMA persists during interphase. Similar to NuMA, a significant amount of cohesin was found to associate with the nuclear matrix. Furthermore, in the absence of cohesin, mitotic spindle asters failed to form in vitro. Our results raise the intriguing possibility that in addition to its well demonstrated function in sister chromatid cohesion, cohesin may be involved in spindle assembly during mitosis.  相似文献   

11.
Structural maintenance of chromosome (SMC) proteins play a central role in higher-order chromosome structure in all kingdoms of life. SMC proteins consist of a long coiled-coil domain that joins an ATP binding cassette (ABC) ATPase domain on one side and a dimerization domain on the other side. SMC proteins require ATP binding or hydrolysis to promote cohesion and condensation, which is suggested to proceed via formation of SMC rings or assemblies. To learn more about the role of ATP in the architecture of SMC proteins, we report crystal structures of nucleotide-free and ATP bound P. furiosus SMC ATPase domains. ATP dimerizes two SMC ATPase domains by binding to opposing Walker A and signature motifs, indicating that ATP binding can directly assemble SMC proteins. DNA stimulates ATP hydrolysis in the engaged SMC ABC domains, suggesting that ATP hydrolysis can be allosterically regulated. Structural and mutagenesis data identify an SMC protein conserved-arginine finger that is required for DNA stimulation of the ATPase activity and directly connects a putative DNA interaction site to ATP. Our results suggest that stimulation of the SMC ATPase activity may be a specific feature to regulate the ATP-driven assembly and disassembly of SMC proteins.  相似文献   

12.
ATP hydrolysis is required for cohesin's association with chromosomes   总被引:12,自引:0,他引:12  
BACKGROUND: A multi-subunit protein complex called cohesin is involved in holding sister chromatids together after DNA replication. Cohesin contains four core subunits: Smc1, Smc3, Scc1, and Scc3. Biochemical studies suggest that Smc1 and Smc3 each form 50 nm-long antiparallel coiled coils (arms) and bind to each other to form V-shaped heterodimers with globular ABC-like ATPases (created by the juxtaposition of N- and C-terminal domains) at their apices. These Smc "heads" are connected by Scc1, creating a tripartite proteinaceous ring. RESULTS: To investigate the role of Smc1 and Smc3's ATPase domains, we engineered smc1 and smc3 mutations predicted to abolish either ATP binding or hydrolysis. All mutations abolished Smc protein function. The binding of ATP to Smc1, but not Smc3, was essential for Scc1's association with Smc1/3 heterodimers. In contrast, mutations predicted to prevent hydrolysis of ATP bound to either head abolished cohesin's association with chromatin but not Scc1's ability to connect Smc1's head with that of Smc3. Inactivation of the Scc2/4 complex had a similar if not identical effect; namely, the production of tripartite cohesin rings that cannot associate with chromosomes. CONCLUSIONS: Cohesin complexes whose heads have been connected by Scc1 must hydrolyze ATP in order to associate stably with chromosomes. If chromosomal association is mediated by the topological entrapment of DNA inside cohesin's ring, then ATP hydrolysis may be responsible for creating a gate through which DNA can enter. We suggest that ATP hydrolysis drives the temporary disconnection of Scc1 from Smc heads that are needed for DNA entrapment and that this process is promoted by Scc2/4.  相似文献   

13.
The Chlamydia pneumoniae CopN protein is a member of the YopN/TyeA/InvE/MxiC family of secreted proteins that function to regulate the secretion of type III secretion system (T3SS) translocator and effector proteins. In this study, the Scc1 (CP0432) and Scc4 (CP0033) proteins of C. pneumoniae AR-39 were demonstrated to function together as a type III secretion chaperone that binds to an N-terminal region of CopN. The Scc1/Scc4 chaperone promoted the efficient secretion of CopN via a heterologous T3SS, whereas, the Scc3 chaperone, which binds to a C-terminal region of CopN, reduced CopN secretion.  相似文献   

14.
Cohesin is a protein complex that forms a ring around sister chromatids thus holding them together. The ring is composed of three proteins: Smc1, Smc3 and Scc1. The roles of three additional proteins that associate with the ring, Scc3, Pds5 and Wpl1, are not well understood. It has been proposed that these three factors form a complex that stabilizes the ring and prevents it from opening. This activity promotes sister chromatid cohesion but at the same time poses an obstacle for the initial entrapment of sister DNAs. This hindrance to cohesion establishment is overcome during DNA replication via acetylation of the Smc3 subunit by the Eco1 acetyltransferase. However, the full mechanistic consequences of Smc3 acetylation remain unknown. In the current work, we test the requirement of Scc3 and Pds5 for the stable association of cohesin with DNA. We investigated the consequences of Scc3 and Pds5 depletion in vivo using degron tagging in budding yeast. The previously described DHFR-based N-terminal degron as well as a novel Eco1-derived C-terminal degron were employed in our study. Scc3 and Pds5 associate with cohesin complexes independently of each other and require the Scc1 "core" subunit for their association with chromosomes. Contrary to previous data for Scc1 downregulation, depletion of either Scc3 or Pds5 had a strong effect on sister chromatid cohesion but not on cohesin binding to DNA. Quantity, stability and genome-wide distribution of cohesin complexes remained mostly unchanged after the depletion of Scc3 and Pds5. Our findings are inconsistent with a previously proposed model that Scc3 and Pds5 are cohesin maintenance factors required for cohesin ring stability or for maintaining its association with DNA. We propose that Scc3 and Pds5 specifically function during cohesion establishment in S phase.  相似文献   

15.
The eukaryotic SMC1/SMC3 heterodimer is essential for sister chromatid cohesion and acts in DNA repair and recombination. Dimerization depends on the central hinge domain present in all SMC proteins, which is flanked at each side by extended coiled-coil regions that terminate in specific globular domains. Here we report on DNA interactions of the eukaryotic, heterodimeric SMC1/SMC3 hinge regions, using the two known isoforms, SMC1alpha/SMC3 and the meiotic SMC1beta/SMC3. Both dimers bind DNA with a preference for double-stranded DNA and DNA rich in potential secondary structures. Both dimers form large protein-DNA networks and promote reannealing of complementary DNA strands. DNA binding but not dimerization depends on approximately 20 amino acids of transitional sequence into the coiled-coil region. Replacement of three highly conserved glycine residues, thought to be required for dimerization, in one of the two hinge domains still allows formation of a stable dimer, but if two hinge domains are mutated dimerization fails. Single-mutant dimers bind DNA, but hinge monomers do not. Together, we show that eukaryotic hinge dimerization does not require conserved glycines in both hinge domains, that only the transition into the coiled-coil region rather than the entire coiled-coil region is necessary for DNA binding, and that dimerization is required but not sufficient for DNA binding of the eukaryotic hinge heterodimer.  相似文献   

16.
Hirano M  Hirano T 《The EMBO journal》2004,23(13):2664-2673
Structural maintenance of chromosomes (SMC) proteins are central regulators of higher-order chromosome dynamics from bacteria to humans. The Bacillus subtilis SMC (BsSMC) homodimer adopts a V-shaped structure with an ATP-binding catalytic domain at each end. We report here that two small proteins, ScpA and ScpB, associate with the catalytic domains of BsSMC in an ordered fashion and suppress its ATPase activity. When combined with a 'transition state' mutant of BsSMC that poorly hydrolyzes ATP, ScpA promotes stable engagement of two catalytic domains in an ATP-dependent manner. In solution, this occurs intramolecularly and closes the DNA-entry gate of an SMC dimer. ScpB further stabilizes this conformation and prevents BsSMC from binding to double-stranded DNA (dsDNA). In contrast, when the mutant BsSMC is first allowed to interact with dsDNA, subsequent addition of ScpA leads to assembly of large nucleoprotein complexes, possibly by stabilizing intermolecular engagement of the catalytic domains from different SMC dimers. We propose that the ATP-modulated engagement/disengagement cycle of SMC proteins plays both positive and negative roles in their dynamic interactions with dsDNA.  相似文献   

17.
J Soppa 《Gene》2001,278(1-2):253-264
Structural maintenance of chromosomes (SMC) proteins are known to be essential for chromosome segregation in some prokaryotes and in eukaryotes. A systematic search for the distribution of SMC proteins in prokaryotes with fully or partially sequenced genomes showed that they form a larger family than previously anticipated and raised the number of known prokaryotic homologs to 54. Secondary structure predictions revealed that the length of the globular N-terminal and C-terminal domains is extremely well conserved in contrast to the hinge domain and coiled-coil domains which are considerably shorter in several bacterial species. SMC proteins are present in all gram-positive bacteria and in nearly all archaea while they were found in less than half of the gram-negative bacteria. Phylogenetic analyses indicate that the SMC tree roughly resembles the 16S rRNA tree, but that cyanobacteria and Aquifex aeolicus obtained smc genes by lateral transfer from archaea. Fourteen out of 22 smc genes located in fully sequenced genomes seem to be co-transcribed with a second gene out of six different gene families, indicating that the deduced gene products might be involved in similar functions. The SMC proteins were compared with other prokaryotic proteins with long coiled-coil domains. The lengths of different protein domains and signature sequences allowed to differentiate SMCs, MukBs, which were found to be confined to gamma proteobacteria, and two subfamilies of COG 0419 including the SbcC nuclease from E. coli. A phylogenetic analysis was performed including the prokaryotic coiled-coil proteins as well as SMCs and Rad18 proteins from selected eukaryotes.  相似文献   

18.
Proteolytic cleavage of the cohesin subunit Scc1 is a consistent feature of anaphase onset, although temporal differences exist between eukaryotes in cohesin loss from chromosome arms, as distinct from centromeres. We describe the effects of genetic deletion of Scc1 in chicken DT40 cells. Scc1 loss caused premature sister chromatid separation but did not disrupt chromosome condensation. Scc1 mutants showed defective repair of spontaneous and induced DNA damage. Scc1-deficient cells frequently failed to complete metaphase chromosome alignment and showed chromosome segregation defects, suggesting aberrant kinetochore function. Notably, the chromosome passenger INCENP did not localize normally to centromeres, while the constitutive kinetochore proteins CENP-C and CENP-H behaved normally. These results suggest a role for Scc1 in mitotic regulation, along with cohesion.  相似文献   

19.
SMC (structural maintenance of chromosomes) proteins are large coiled-coil proteins involved in chromosome condensation, sister chromatid cohesion, and DNA double-strand break processing. They share a conserved five-domain architecture with three globular domains separated by two long coiled-coil segments. The coiled-coil segments are antiparallel, bringing the N and C-terminal globular domains together. We have expressed a fusion protein of the N and C-terminal globular domains of Thermotoga maritima SMC in Escherichia coli by replacing the approximately 900 residue coiled-coil and hinge segment with a short peptide linker. The SMC head domain (SMChd) binds and condenses DNA in an ATP-dependent manner. Using selenomethionine-substituted protein and multiple anomalous dispersion phasing, we have solved the crystal structure of the SMChd to 3.1 A resolution. In the monoclinic crystal form, six SMChd molecules form two turns of a helix. The fold of SMChd is closely related to the ATP-binding cassette (ABC) ATPase family of proteins and Rad50, a member of the SMC family involved in DNA double-strand break repair. In SMChd, the ABC ATPase fold is formed by the N and C-terminal domains with the 900 residue coiled-coil and hinge segment inserted in the middle of the fold. The crystal structure of an SMChd confirms that the coiled-coil segments in SMC proteins are anti-parallel and shows how the N and C-terminal domains come together to form an ABC ATPase. Comparison to the structure of the MukB N-terminal domain demonstrates the close relationship between MukB and SMC proteins, and indicates a helix to strand conversion when N and C-terminal parts come together.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号