首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effects of transauricular electroshock (ECS) on EEG and EMG patterns, and overt behaviors (wet-dog shaking and excessive grooming), caused by RX 336-M (7,8-dihydro-5', 6'-dimethylcyclohex-5'-eno-1-1', 2', 8',14 codeinone) in rats. Male, Sprague Dawley rats were prepared with cerebrocortical EEG and temporalis muscle EMG electrodes. In sham-shocked rats, RX 336-M (6 mg/kg, i.p.) induced behavioral activation, rapid forepaw movements, wet-dog shaking and exessive grooming; this sydrome was associated with EEG activation and EMG spiking. ECS alone produced a generalized seizure followed by postictal EEG slowing and behavioral depression. ECS suppressed the RX 336-M-induced behavioral syndrome and associated EEG and EMG responses. This attenuating action of ECS, presumed to involve the release of endogenous opioids, was antagonized when the rats were pretreated with naloxone (10 mg/kg, s.c.). Our results provide further evidence for the view that endogenous opioids are involved in the pathophysiology of certain postictal phenomena.  相似文献   

2.
β-Endorphin (5–80 μg) or [D-Ala2, Met5] enkephalinamide (DALA) (5–40 μg) was administered intracerebroventricularly to rats. With both opioid peptides, there was no direct relationship between log dose and mean number of wet-dog shakes (WDS) that occured during the following 15 min. When the results were analyzed quantally, the dose of DALA that caused 50% of the rats to shake at least twice was 8.6 μg (4.9–15 μg). β-Endorphin had such poor efficacy that an ED 50 could not be obtained. Morphine (1 and 5 mg/kg, s.c.) antagonized shaking caused by the optimal dose of DALA (20 μg). Naloxone (0.1–10 mg/kg, s.c.) attenuated both DALA- and β-endorphin-induced WDS in a dose-related manner. This latter result differentiates shaking associated with opioid peptides from that caused by thyrotropin releasing hormone (TRH), another endogenous stimulant of WDS in rats. There was no cross-tolerance between RX 336-M (7,8-dihydro-5′,6′-dimethylylohex-5′-eno-1′,2′,8′,14 codeinone), a novel shake inducing agent, and β-endorphin. This finding again differentiates β-endorphin-induced shaking from that caused by TRH and also from that associated with several exogenous stimulants of WDS.  相似文献   

3.
The effects of acid--base alterations produced by changing bicarbonate (metabolic type), carbon dioxide tension (respiratory type), or both bicarbonate and carbon dioxide tension (compensated type) on skeletal muscle twitch tension, intracellular pH, and intracellular potassium were studied in vitro. Hemidiaphragm muscles from normal rats and rats fed a potassium-deficient diet were used. Decreasing the extracellular pH by decreasing bicarbonate or increasing CO2 in the bathing fluid produced a decrease in intracellular pH, intracellular K+, and muscle twitch tension. However, at a constant extracellular pH, an increase in CO2 (compensated by an increase in bicarbonate) produced an increase in intracellular K+ and twitch tension in spite of a decrease in intracellular pH. The effect on twitch tension of the hemidiaphragms showed a rapid onset, was reversible, persisted until the buffer composition was changed, and was independent of synaptic transmission. It is concluded that the twitch tension of the skeletal muscle decrease with a decrease in intracellular K+. The muscle tension also decreases with an increase in the ratio of intracellular and extracellular H+ concentration. However, there is no consistent relationship between muscle tension and extracellular or intracellular pH. The muscle tension of the diaphragms taken from K+-deficient rats is more sensitive to variations in CO2, PH, and bicarbonate concentration of the medium than that of the control rat diaphragms.  相似文献   

4.
Methylxanthines can produce behavior resembling opiate withdrawal in rats. Since previous studies have demonstrated the involvement of central noradrenergic systems during naloxone-precipitated withdrawal, the effects of 3-isobutyl-1-methylxanthine (IBMX) on norepinephrine metabolism in rat brain were studied. It was found that administration of IBMX elevated levels of the major norepinephrine metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) in areas innervated by the locus coeruleus. The increases in MHPG was noted 1 h after administration and was maximal (270% of control) after 3 h. Levels of another norepinephrine metabolite, 3,4-dihydroxyphenylglycol, followed a similar pattern and time course. Coadministration of naloxone with IBMX did not affect the IBMX-induced elevation in MHPG. Administration of the alpha-agonist clonidine, however, antagonized the effects of IBMX on MHPG levels. The effects of IBMX and clonidine were dose dependent; the lowest dose of IBMX needed to elevate MHPG was 30 mumol/kg (i.p.), and clonidine (180 nmol/kg) reduced the effect of IBMX (100 mumol/kg) by 50%. The data, discussed in terms of a methylxanthine-noradrenergic interaction, suggest that withdrawal behaviors in general may be subserved by hyperactive noradrenergic neurons.  相似文献   

5.
An integrated model describing the interaction of nondepolarizing neuromuscular blocking agents with reversible anticholinesterase agents is derived and compared with a naive model using experimental data obtained from four anesthetized dogs. Three consecutive but separate steady-state d-tubocurarine blocks (approximately 50, 70, and 90%) were induced in each of the four dogs and reversed by short edrophonium infusions. Edrophonium arterial concentrations and twitch tension of the anterior tibialis muscle were measured. Both the integrated and the naive model were fit to the twitch tension data using a model with a hypothetical "effect" compartment. The integrated model consistently fit the twitch tension data better than the naive model; the sum of squared deviations was lower by 46, 45, 87, and 69%, respectively, with the integrated model than with the naive model. Also, in contrast to the naive model, the integrated model is capable of describing the interaction of the anticholinesterase agent and the neuromuscular blocking agent when the concentration of either varies with time.  相似文献   

6.
In the present study, we investigated the characteristics of the postrest contraction (PRC) in chronic diabetic ventricular muscle. We used WBN/Kob rats of 7-8 weeks as the spontaneously diabetic animal and Wistar rats of 7-8 weeks as the control. We found: (1) No significant differences were seen in the amplitude, the contracting speed, and the relaxing speed of electrically stimulated twitch tension between control and WBN/Kob rats. In addition, the relationship between amplitude of twitch tension and stimulus cycle lengths (0.2-5 sec) was very similar in both animals. (2) The ratios of the first twitch tension (T1) of PRC with various rest intervals (5-600 sec) to the steady-state tension (Tss) were significantly smaller in the diabetic rats than in the controls. (3) When the preparation was stimulated at shorter cycle lengths, the recovery process of PRC was separated into at least two components (fast and slow components). In the diabetic rats, the time constant (tau) of both components was significantly longer than in controls. (4) After caffeine (10(-3) M) treatment, tau of the fast component in the control rats became longer, whereas it remained unchanged in diabetic rats. These findings suggest a dysfunction of the intracellular calcium handling system in spontaneously diabetic heart that is likely to include impaired calcium sequestration and/or extrusion.  相似文献   

7.
The relation between sarcomere length, tension and time course of tension development in twitch and tetanic contractions at 20 degrees C was determined for isolated fibres from the semitendinosus muscle of the frog (Rana esculenta). In twenty fibres at about 2.15 micron sarcomere length, the peak twitch tension, the maximum tetanic tension and the twitch/tetanus ratio ranged, respectively, from 0.22 to 1.6 kg/cm2, from 2.13 o 3.96 kg/cm2 an from 0.07 to 0.53. The peak twitch tension was found to be: i) directly correlated with the twitch/tetanus ratio and the time to the peak of the first derivative of the twitch tension, ii) inversely correlated with the time to the peak of the first derivative of tetanic tension. No significant correlation was found between the maximal tetanic tension and the peak twitch tension or the twitch/tetanus ratio. Peak twitch tension and twitch/tetanus ratio were not correlated with the fibre cross-sectional area which ranged from 1.052 to 6,283 micron2. Sarcomere length-tension curves for twitch and tetanic isometric contractions at 20 degrees C were determined in twelve fibres. Increases in sarcomere length from about 2.15 to 2.85 micron produced, depending on the peak twitch tension or the twitch/tetanus ratio at about 2.15 micron, either decrease and no change or increase in peak twitch tension, but constantly enhanced the twitch/tetanus ratio and the degree of this potentiation was inversely correlated with the twitch/tetanus ratio at 2.15 micron. Increase in sarcomere length above 2.15 micron did not alter the course of the early development of twitch and tetanic tensions, reduced considerably the variation in peak twitch tension and twitch/tetanus ratio, without altering that of tetanic tension and swamped the correlation between the peak twitch tension and the time to peak of the differentiated twitch tension. However, the peak twitch tension at about 2.85 micron resulted to be directly correlated with the peak twitch tension at about 2.15 micron and in addition the relative length-dependent change in the time of the peak of the first derivative of the twitch tension resulted to be directly correlated with the relative length-dependent change in the peak twitch tension. It is concluded that both the duration of the active state and the rate factors of activation contribute to the determining of the large variation in peak twitch tension at about 2.15 micron, whereas the length-dependent increase in twitch/tetanus ratio appears to be mainly determined by prolongation of the active state duration.  相似文献   

8.
The dose-response effects of BAY K 8644 and nifedipine on diaphragmatic contractility were assessed in vitro. Isolated diaphragmatic fibers were obtained from rats and placed in an open-topped channel of a Plexiglas tissue chamber perfused with continuously flowing Krebs solution heated to 37 degrees C. Isometric twitch force, generated in response to 1-Hz supramaximal electrical stimulation (4 times/min), was measured with a highly sensitive photoelectric force transducer. Low doses of BAY K 8644 or nifedipine (10(-7) M) were without effect on twitch tension. For 10(-6) M, twitch tension increased by 10 +/- 1% (P less than 0.005) for both drugs. For 10(-5) M, twitch tension increased by 12 +/- 1% (P less than 0.05), and maximal contractures were observed (BAY K 8644 and nifedipine). Simultaneous drug administration did not reveal mutual antagonism as expected; instead the effects were additive, with twitch tension increasing by 30 +/- 2% (P less than 0.001) for 10(-5) M BAY K 8644 + nifedipine. Both BAY K 8644 and nifedipine altered twitch characteristics. In low-calcium media (0.5 mM) twitch potentiation produced by the two drugs was further enhanced (increasing 60% for 10(-5) M BAY K 8644 or nifedipine). Contractures, by contrast, were abolished. From these results it is difficult to reconcile a unique action of these drugs on calcium channels as is conventionally accepted.  相似文献   

9.
This investigation examined the effects of hypokinesia/hypodynamia (H/H) on fatigability and contractile properties of rat soleus (S) and gastrocnemius (G) muscles. Whole-body suspension for 1 wk was used to eliminate hindlimb load-bearing functions and simultaneously permit voluntary isotonic contractions. Train stimulations (45/min, 16 min) resulted in significantly (P less than 0.05) faster rates of fatigue to lower asymptotes in G from H/H rats. Fatigue in the S was minimal at this stimulation frequency and differences between H/H and control animals were not significant. Contractile properties (twitch and tetanic) were measured before and after train stimulations. H/H suspension resulted in an increased twitch tension in G. However, H/H did not change train or tetanic tensions per gram or other G contractile properties. Peak twitch, train, and tetanic tensions, time to peak tension, one-half relaxation time, and twitch and tetanic peak rates of tension development and decline were unchanged by H/H in S muscles. These results indicate that 1 wk of H/H-induced muscle atrophy significantly increases fatigability in G but does not effect contractile properties of fast-twitch (G) or slow-twitch (S) muscles.  相似文献   

10.
Single muscle fibers were exposed to solutions made hypertonic (approximately 460 milliosmols/kg water) by addition of either NaCl, glycerol, urea, acetamide, ethylene glycol, or propylene glycol. The changes in either the fiber twitch tension or the volume were measured. In the case of NaCl both fiber volume and twitch tension fall rapidly to 64 and 27% of the respective initial value. These two values were maintained for the duration of the exposure. In the case of the other substances, the fiber volume and twitch tension also decreased but in these cases the effect was transient and the fibers recovered their initial volume and twitch tension. The rate of recovery in the different hypertonic media increased in the order: glycerol < urea < ethylene glycol < propylene glycol < acetamide. In the cases of the last three substances, the initial twitch value was recovered in less than 5 min and even surpassed. However, on returning to normal Ringer the fibers' ability to twitch or to develop potassium contractures was lost. The return of the fibers to normal Ringer after exposure to these hypertonic solutions causes a transient swelling of the fibers. However, when fibers were swelled by exposure to hypotonic media, they did not lose their ability to twitch on return to the normal Ringer.  相似文献   

11.
The isometric contractile properties of frog (Rana pipiens) and toad (Bufo bufo) sartorii have been studied over the temperature range from 0 to 20 degrees C. The isometric twitch tension was found to vary considerably between these two species and between muscles in the same species. Between 0 and 4 degrees C there was very little change in maximum isometric twitch tension. Between 4 and 12 degrees C several muscles from frog or toad showed a potentiation of twitch tension whereas others showed a decline. Over this temperature range the toad sartorii consistently demonstrated a greater potentiation. By 12 degrees C a steady decline in twitch tension in both muscles was seen as the temperature range the toad sartorii consistently demonstrated a greater potentiation. By 12 degrees C a steady decline in twitch tension in both muscles was seen as the temperature approached 20 degrees C. The maximum isometric tetanic tension recorded between 18 and 20 degrees C increased fractionally to an average of 1.504 +/- 0.029 (n = 4) for frog sartorii and to 1.377 +/- 0.008 (n = 5) for toad sartorii. The time to peak twitch tension and the half-relaxation time decreased markedly with an increase in temperature. Moreover, the half-relaxation time was reduced by a greater proportion than the time to peak twitch tension. Measurements of instantaneous stiffness by controlled velocity releases from the plateau of isometric tetani revealed that the large increase in isometric tetanus tension as the muscle was warmed was not accompanied by a corresponding increase in the total number of active cross-bridges. The possibility that a decreased availability of intracellular Ca2+ ions at the contractile sites contributing to the fall of isometric twitch tension at elevated temperatures is discussed. The possibility exists that at elevated temperatures a change inthe intrinsic contractile ability of the muscle occurs which produces an increased tension per cross-bridge.  相似文献   

12.
Intracisternal injection of the TRH analog RX 77368 (p-Glu-His-(3,3'-dimethyl)-Pro NH2) increased gastric acid and pepsin output in conscious pylorus-ligated rats. In urethane-anesthetized, gastric fistula rats, intracisternal RX 77368 or TRH induced stimulation of gastric acid output which was rapid in onset, long lasting, and dose-dependent, in doses ranging from 3 to 100 ng/rat for RX 77368, and 0.1 to 1 micrograms/rat for TRH. Vagotomy or atropine pretreatment reversed RX 77368 gastric secretory response. The analog was less effective when infused intravenously (1-10 micrograms X kg-1 X h-1) and 22 times more potent than TRH when given intracisternally. These results demonstrated the ability of RX 77368 to act within the rat brain to enhance gastric secretion (acid and pepsin) through vagus cholinergic dependent mechanisms. The enhanced potency and extended duration of action of RX 77368 over TRH, could make intracisternal injection of this peptide a useful test to induce centrally mediated vagal dependent stimulation of gastric secretion in rats.  相似文献   

13.
Shortening heat was defined by Hill as the "difference between heat produced when shortening occurs and that produced in a similar contraction without shortening." For the tetanus the "similar contraction" was an isometric one at or near lo. By contrast, in a twitch the "similar contraction" was one in which only activation heat was produced. The applicability of Hill's concept of the shortening heat has been reexamined in both the twitch and tetanus of Rana pipiens semitendinosus muscles. Results of this investigation confirm the existence of an extra heat production accompanying shortening in the twitch and tetanus. In both cases, this shortening heat was proportional to distance shortened and relative afterload. However, at a given afterload the amount of shortening heat produced per distance shortened was greater in the twitch than the tetanus. This difference suggests that the base lines or "similar contractions" employed for the twitch and tetanus are not equivalent. The discrepancy is not remedied by utilizing in the tetanus the activation heat as the myothermic baseline and suggests that some heat producing factor(s) has been omitted in Hill's formulation of the shortening heat. Finally, the existence of Hill's feedback heat, an energy liberation associated with the presence of tension during mechanical relaxation, was not confirmed. This result strongly indicates that relaxation is energetically passive.  相似文献   

14.
The effects of extracellular Ca2+ withdrawal were studied on isolated diaphragmatic muscle fibers and compared with the effects on the papillary, soleus, and extensor digitorum longus (EDL) contractility, using the same in vitro model. Diaphragmatic fibers were obtained from 15 rats, and papillary muscles, soleus, and EDL were obtained from 10 animals. Isometric force generated in response to 1-Hz supramaximal electrical stimulation was measured with a highly sensitive photoelectric transducer. After control measurements, perfusion with a Krebs solution depleted of calcium (0 Ca2+) was started while the fibers were continuously stimulated (4 times/min) and twitches recorded. For the papillary fibers, perfusion with zero Ca2+ was followed by an immediate decrease in twitch tension, complete twitch abolition occurring within 3 +/- 1 min after zero-Ca2+ exposure. Diaphragmatic fibers behaved similarly, although twitch abolition was delayed (10 +/- 3 min after 0-Ca2+ exposure). For the soleus fibers, the twitch amplitude amounted to 38 +/- 10% of control (62% decrease on the average) after 30 min of zero-Ca2+ exposure, no twitch abolition being noted even after 1 h of Ca2+-free exposure. The twitch amplitude of the EDL fibers amounted to 75 +/- 7% of control (25% decrease) after 30 min of zero-Ca2+ exposure. The recovery kinetics for the four fiber types after reexposure to Ca2+-containing solution were also different, with papillary and diaphragmatic fibers recovering completely within 2.5 +/- 0.5 and 4 +/- 0.5 min, respectively. By contrast, neither the soleus nor the EDL showed complete recovery after 30 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The rise time of an isometric twitch, the tetanic tension, the twitch tetanus ratio, the frequency-tension relationship, and the height of the MUAP (motor unit action potential) were measured in fast twitch (medial gastrocnemius) and slow twitch (soleus) muscles of the cat immediately before, in the middle, and immediately after fatiguing isometric contractions at tensions of 30, 50 and 80% of each muscle's initial strength (tetanic tension recorded from the unfatigued muscle). Although the twitch-tetanus ratio was always less for the soleus than for the medial gastrocnemius muscles, the twitch-tetanus ratio for any one muscle was constant throughout the duration of fatiguing isometric contractions at any of the tensions examined. In contrast, the twitch tension and tetanic tension of the muscles were both less after the contractions, the largest reduction occurring for both muscles during contractions sustained at the lowest isometric tensions. The time to peak tension of an isometric twitch was prolonged for both muscles following the contractions. This was associated with a corresponding shift in the frequency tension relationship such that at the point of muscular fatigue, the muscles tetanized at lower frequencies of stimulation than did the unfatigued muscle. In contrast, the amplitude of the MUAP showed only a modest reduction throughout the duration of the fatiguing contractions.  相似文献   

16.
We utilized Wistar rats with monocrotaline (MCT)-induced right ventricular hypertrophy (RVH) in order to evaluate the T-type Ca2+ channel current (ICaT) for myocardial contraction. RT-PCR provides that mRNA for T-type Ca2+ channel alpha1-subunits in hypertrophied myocytes was significantly higher than those in control rats (alpha1G; 264+/-36%, alpha1H; 191+/-34%; P<0.05). By whole-cell patch-clamp study, ICaT was recorded only in hypertrophied myocytes but not in control myocytes. The application of 50 nmol/L nifedipine reduced the twitch tension of the right ventricles equally in the control and RVH rats. On the other hand, 0.5 micromol/L mibefradil, a T-type Ca2+ channel blocker, strongly inhibited the twitch tension of the RVH muscle (control 6.4+/-0.8% vs. RVH 20.0+/-2.3% at 5 Hz; P<0.01). In conclusion, our results indicate the functional expression of T-type Ca2+ channels in the hypertrophied heart and their contribution to the remodeling of excitation-contraction coupling in the cardiac myocyte.  相似文献   

17.
A possible role for cyclic adenosine-3'-5'-monophosphate (cAMP) in islet cell replication was examined in collagenase-isolated pancreatic islets from Wistar rats of different age and different metabolic state (non-pregnant, pregnant, days 15.5-17.5). Islets obtained from pregnant rats released significantly more insulin in response to 10 mmol/l glucose (culture for 24 h) and their DNA synthesis (incorporation of [3H]thymidine into islet DNA) was doubled compared to islets from non-pregnant controls. Islets obtained from 4-6 days old rats showed a maximal stimulation of DNA synthesis after exposure to 0.1 mmol/l IBMX (3-isobutyl-1-methylxanthine) whereas the cAMP accumulation and the insulin biosynthesis measured in a subsequent short-term incubation were dose-dependent stimulated up to 1.0 mmol/l IBMX. In islets of 12 days old rats or 3 months old rats, however, IBMX did not stimulate DNA synthesis or insulin release measured during culture, although the cAMP content per islet was significantly enhanced after culture in the presence of IBMX.  相似文献   

18.
ACTH 1-39 (0.2 U IP daily for up to 18 days) has a beneficial effect on the functional reorganization of regenerating motor units of the extensor digitorum longus (EDL) in the adrenalectomized adult rat following crushing of the peroneal nerve. Motor unit activity (maximum twitch tension amplitude/mean increment in twitch tension as voltage is increased by 0.1 V gradations) and nerve-muscle efficiency (tetanic tension from indirect stimulation/tetanic tension from direct stimulation of EDL) were enhanced by ACTH 1-39. Other electrophysiological and contractile parameters were unaffected by the peptide. Spontaneous motor activity in cold stressed 13 day old rats was prolonged by Org 2766, a substituted analogue of ACTH/MSH 4-9, (0.1 microgram/kg daily) but unaffected by the same dosage of ACTH/MSH 4-10. The responsiveness of developing and regenerating motor systems to neuropeptides indicates a plasticity of neuronal connections, which depends on peptide sequence, dosage and the physiological state of the animal (normal, depressed, regenerating or developing, at rest or stressed).  相似文献   

19.
Action potential parameters affecting excitation-contraction coupling   总被引:3,自引:0,他引:3  
In quantifying type B potentiation effects, given earlier merely qualitatively, it is found that Zn2+, 1—50 µM, causes increases in action potential duration, twitch tension, and twitch contraction period time, which are all directly proportional to the log of the concentration. Hence, the duration of the action potential, i.e. the magnitude of its mechanically effective period, is a causal factor quantitatively determining the degree of mechanical activation in the isometric twitch. In higher concentrations of Zn2+ up to 1000 µM, the spike duration and the contraction time continue to increase but the twitch tension is disproportionately smaller, evidently because the high zinc (500—1000 µM) raises the mechanical threshold of excitation-contraction (E—C) coupling and reduces the intrinsic strength of the contractile system. Eserine (1.5 mM) and also high Zn2+ not only cause type B potentiation effects, but also slow the rise of the spike, thus causing retardation of the very onset of tension production, which is even greater for high Zn2+ because of the raised mechanical threshold. This retardation is then succeeded by the faster tension output characteristic of type B potentiation resulting from spike prolongation. Thus, the changes in the consecutive, rising and falling phases of the action potential explicitly register their separate effects in the respective very earliest and directly following periods of twitch output; i.e., each phase of the action potential produces its own mechanical "transform." These transforms, and other effects, suggest that the release of activator Ca2+ from the sarcoplasmic reticulum during E—C coupling can be graded in both the rate and the total amount of the release.  相似文献   

20.
In order to clarify the delay between muscular structural changes and mechanical responses, the intensity changes of the equatorial and myosin layer-line reflections were studied by a time-resolved X-ray diffraction technique using synchrotron radiation. The muscle was stimulated at 12-13 degrees C by two successive stimuli at an interval (80-100 ms) during which the second twitch started while tension was still being exerted by the muscle. At the first twitch, the intensity changes of the 1.0 and 1.1 equatorial reflections reached 65 and 200% of the resting values, and further changes to 55 and 220% were seen at the second twitch, respectively. Although the second twitch decreased not only the time to peak tension but also that to the maximum intensity changes of the equatorial reflections (in both cases, about 15 ms), the delay (about 20 ms) between the intensity changes and the development of tension at the first twitch were still observed at the second twitch. On the other hand, the intensities of the 42.9 nm off-meridional and the 21.5 nm meridional myosin reflections decreased at the first twitch to the levels found when a muscle was isometrically tetanized, and no further decrease in their intensities was observed at the second twitch. These results indicate that a certain period of time is necessary for myosin heads to contribute to tension development after their arrival in the vicinity of the thin filaments during contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号