首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phlorizin-sensitive currents mediated by a Na-glucose cotransporter were measured using intact or internally perfused Xenopus laevis oocytes expressing human SGLT1 cDNA. Using a two-microelectrode voltage clamp technique, measured reversal potentials (Vr) at high external alpha-methylglucose (alpha MG) concentrations were linearly related to In[alpha MG]o, and the observed slope of 26.1 +/- 0.8 mV/decade indicated a coupling ratio of 2.25 +/- 0.07 Na ions per alpha MG molecule. As [alpha MG]o decreased below 0.1 mM, Vr was no longer a linear function of In[alpha MG]o, in accordance with the suggested capacity of SGLT1 to carry Na in the absence of sugar (the "Na leak"). A generalized kinetic model for SGLT1 transport introduces a new parameter, Kc, which corresponds to the [alpha MG]o at which the Na leak is equal in magnitude to the coupled Na-alpha MG flux. Using this kinetic model, the curve of Vr as a function of In[alpha MG]o could be fitted over the entire range of [alpha MG]o if Kc is adjusted to 40 +/- 12 microM. Experiments using internally perfused oocytes revealed a number of previously unknown facets of SGLT1 transport. In the bilateral absence of alpha MG, the phlorizin-sensitive Na leak demonstrated a strong inward rectification. The affinity of alpha MG for its internal site was low; the Km was estimated to be between 25 and 50 mM, an order of magnitude higher than that found for the extracellular site. Furthermore, Vr determinations at varying alpha MG concentrations indicate a transport stoichiometry of 2 Na ions per alpha MG molecule: the slope of Vr versus In[alpha MG]o averaged 30.0 +/- 0.7 mV/decade (corresponding to a stoichiometry of 1.96 +/- 0.04 Na ions per alpha MG molecule) whenever [alpha MG]o was higher than 0.1 mM. These direct observations firmly establish that Na ions can utilize the SGLT1 protein to cross the membrane either alone or in a coupled manner with a stoichiometry of 2 Na ions per sugar, molecule.  相似文献   

2.
Desorption electrospray ionization (DESI) was utilized to monitor the presence of targeted central carbon metabolites within bacterial cell extracts and the quench supernatant of Escherichia coli. The targeted metabolites were identified through tandem mass spectrometry (MS/MS) product ion scans using collision-induced dissociation in the negative ion mode. Picogram detection limits were achieved for a majority of the metabolites during MS/MS analysis of standard metabolite solutions. In a [U-(13)C]glucose pulse experiment, where uniformly labeled glucose was fed to E. coli, the corresponding fragment ions from labeled metabolites in extracts were generally observed. There was evidence of matrix effects including moderate suppression by other metabolites within the spectra of the labeled and unlabeled extracts. To improve the specificity and sensitivity of detection, optimized in situ ambient chemical reactions using DESI and extractive electrospray ionization (EESI) were carried out for targeted compounds. This study provides the first indication of the potential to perform in situ targeted metabolomics of a bacterial sample via ambient ionization mass spectrometry.  相似文献   

3.
Metabolic flux analysis in biotechnology processes   总被引:1,自引:0,他引:1  
Metabolic flux analysis (MFA) has become a fundamental tool of metabolic engineering to elucidate the metabolic state of the cell and has been applied to various biotechnological processes. In recent years, considerable technical advances have been made. Developments of analytical instruments allow us to determine 13C labeling distribution of intracellular metabolites with high accuracy and sensitivity. Moreover, kinetic information of intracellular label distribution during isotopic instationary enables us to calculate metabolic fluxes with shortened experimental time and decreased amount of labeled substrate. The 13C MFA may be one of the most promising approaches for the target estimation to improve strain performances and production processes.  相似文献   

4.
We have developed a novel approach for measuring highly accurate and precise metabolic fluxes in living cells, termed COMPLETE-MFA, short for complementary parallel labeling experiments technique for metabolic flux analysis. The COMPLETE-MFA method is based on combined analysis of multiple isotopic labeling experiments, where the synergy of using complementary tracers greatly improves the precision of estimated fluxes. In this work, we demonstrate the COMPLETE-MFA approach using all singly labeled glucose tracers, [1-13C], [2-13C], [3-13C], [4-13C], [5-13C], and [6-13C]glucose to determine precise metabolic fluxes for wild-type Escherichia coli. Cells were grown in six parallel cultures on defined medium with glucose as the only carbon source. Mass isotopomers of biomass amino acids were measured by gas chromatography–mass spectrometry (GC–MS). The data from all six experiments were then fitted simultaneously to a single flux model to determine accurate intracellular fluxes. We obtained a statistically acceptable fit with more than 300 redundant measurements. The estimated flux map is the most precise flux result obtained thus far for E. coli cells. To our knowledge, this is the first time that six isotopic labeling experiments have been successfully integrated for high-resolution 13C-flux analysis.  相似文献   

5.
The roles played by ATP binding and hydrolysis in the complex mechanisms that open and close cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels remain controversial. In this work, the contributions made by ATP and Mg(2+) ions to the gating of phosphorylated cardiac CFTR channels were evaluated separately by measuring the rates of opening and closing of single channels in excised patches exposed to solutions in which [ATP] and [Mg(2+)] were varied independently. Channel opening was found to be rate-limited not by the binding of ATP alone, but by a Mg(2+)-dependent step that followed binding of both ATP and Mg(2+). Once a channel had opened, sudden withdrawal of all Mg(2+) and ATP could prevent it from closing for tens of seconds. But subsequent exposure of such an open channel to Mg(2+) ions alone could close it, and the closing rate increased with [Mg(2+)] over the micromolar range (half maximal at approximately 50 microM [Mg(2+)]). A simple interpretation is that channel closing is stoichiometrically coupled to hydrolysis of an ATP molecule that remains tightly associated with the open CFTR channel despite continuous washing. If correct, that ATP molecule appears able to reside for over a minute in the catalytic site that controls channel closing, implying that the site must entrap, or have an intrinsically high apparent affinity for, ATP, even without a Mg(2+) ion. Such stabilization of the open-channel conformation of CFTR by tight binding, or occlusion, of an ATP molecule echoes the stabilization of the active conformation of a G protein by GTP.  相似文献   

6.
Current (13)C labeling experiments for metabolic flux analysis (MFA) are mostly limited by either the requirement of isotopic steady state or the extremely high computational effort due to the size and complexity of large metabolic networks. The presented novel approach circumvents these limitations by applying the isotopic non-stationary approach to a local metabolic network. The procedure is demonstrated in a study of the pentose phosphate pathway (PPP) split-ratio of Penicillium chrysogenum in a penicillin-G producing chemostat-culture grown aerobically at a dilution rate of 0.06h(-1) on glucose, using a tracer amount of uniformly labeled [U-(13)C(6)] gluconate. The rate of labeling inflow can be controlled by using different cell densities and/or different fractions of the labeled tracer in the feed. Due to the simplicity of the local metabolic network structure around the 6-phosphogluconate (6pg) node, only three metabolites need to be measured for the pool size and isotopomer distribution. Furthermore, the mathematical modeling of isotopomer distributions for the flux estimation has been reduced from large scale differential equations to algebraic equations. Under the studied cultivation condition, the estimated split-ratio (41.2+/-0.6%) using the novel approach, shows statistically no difference with the split-ratio obtained from the originally proposed isotopic stationary gluconate tracing method.  相似文献   

7.
We have developed a colloidal gold labeling technique for the direct quantitation of the cell surface area. The method is based on coating the cell surface with [195Au] colloidal gold-protein complexes followed by morphometric determination of the labeling density (gold particles/micron2 cell surface) and radiometric determination of the total number of gold particles bound per cell. The ratio of both values directly gives the cell surface area. The accuracy of the method was shown using Staphylococcus aureus cells as a model system, where the cell surface area determined with our assay (4.0 microns2) corresponded well to the value calculated from the radius of the cells (3.6 microns2). In a more complex model system J-774 mouse macrophages were labeled with different amounts of [195Au] gold-protein complexes to show that the assay is independent of the degree of saturation of the cell surface binding sites. Both high (135 Au/microns2) and low (65 Au/microns2) labeling densities resulted in a surface area of about 1200 microns2. The technique finally was applied to L-929 fibroblasts to determine the increase of the cell surface area when the cells change from a spherical to a flat monolayer state. We found that the cell surface area increased 3-fold during the spreading process. The results show that the colloidal gold labeling technique allows the direct determination of the surface area of complex eukaryotic cells. The technique is suitable for the quantitation of changes in the surface architecture known to occur in different functional states of eukaryotic cells.  相似文献   

8.
A theoretical model for the kinetics of uptake of a putative precursor molecule into nucleotide pools and into replicating DNA has been developed. The relationship between the accumulation of radioactively labeled precursors in the pool and the appearance of radioactivity in DNA is then derived. Experiments have been carried out in bacteria to compare the uptake of radioactive thymine into deoxythymidine triphosphate, deoxythymidine diphosphate sugars, and DNA to test the suitability of either compound as the direct precursor of thymine in DNA. New one-dimensional, thin-layer chromatographic procedures were used to determine the specific activity of deoxythymidine triphosphate and deoxythymidine triphosphate and deoxythymidine diphosphate sugars in growing cultures of 32PO4-labeled Escherichia coli during pulse labeling with [3H]-thymine. A comparison of the experimental data with our theoretical model supports the hypothesis that deoxythymidine triphosphate, but not deoxythymidine sugar, is the direct precursor of thymine in normally replicating DNA in vivo.  相似文献   

9.
We have directly tested the ability of acetoacetate, upon activation to the CoA thioester, to channel into the cholesterogenic pathway prior to scrambling of its carbon skeleton with the acetate pool. The approach relies upon trapping [3-13C]acetoacetate-derived hydroxymethylglutaryl-CoA, hydrolyzing this metabolite, and esterifying the resulting hydroxymethylglutaric acid to allow gas chromatography/mass spectrometry analysis of the dimethyl esters for the 13C enrichment and labeling pattern. 99% enriched [3-13C] and [1,3,5-13C]hydroxymethylglutaric acid samples were synthesized, providing standards against which physiological samples could be compared. Cytosolic extracts from brain and liver of cholestyramine-fed rats were incubated with [3-13C]acetoacetate (2 mM) or with [1-13C]acetate (5 mM). In contrast to [13C]acetate-derived hydroxymethylglutarate, which shows the expected triple labeling pattern, [13C]acetoacetate-derived hydroxymethylglutarate from both liver and brain extracts is predominantly monolabeled. These data suggest that, after acetoacetate is activated to the CoA thioester, cytosolic hydroxymethylglutaryl-CoA synthase effectively commits much of this acetoacetyl-CoA to cholesterogenesis before thiolase can scramble the carbon skeleton of the acetoacetyl moiety into the acetate pool. This chemical approach represents an alternative method for testing the channeling of metabolites through sequential steps in a metabolic pathway. Such a method may be useful when physical or kinetic techniques prove to be unsuitable.  相似文献   

10.
To determine the effect of microbial metabolites on the release of root exudates from perennial ryegrass, seedlings were pulse labelled with [14C]-CO2 in the presence of a range of soil micro-organisms. Microbial inoculants were spatially separated from roots by Millipore membranes so that root infection did not occur. Using this technique, only microbial metabolites affected root exudation. The effect of microbial metabolites on carbon assimilation and distribution and root exudation was determined for 15 microbial species. Assimilation of a pulse label varied by over 3.5 fold, dependent on inoculant. Distribution of the label between roots and shoots also varied with inoculant, but the carbon pool that was most sensitive to inoculation was root exudation. In the absence of a microbial inoculant only 1% of assimilated label was exuded. Inoculation of the microcosms always caused an increase in exudation but the percentage exuded varied greatly, within the range of 3–34%.  相似文献   

11.
We describe a method to identify metabolites of proteins that eliminates endogenous background by using stable isotope labeled matrices. This technique allows selective screening of the intact therapeutic molecule and all metabolites using a modified precursor ion scan that monitors low molecular weight fragment ions produced during MS/MS. This distinct set of low mass ions differs between isotopically labeled and natural isotope containing species allowing excellent discrimination between endogenous compounds and target analytes. All compounds containing amino acids that consist of naturally abundant isotopes can be selected using this scanning technique for further analysis, including metabolites of the parent molecule. The sensitivity and selectivity of this technique is discussed with specific examples of insulin metabolites identified within a complex matrix using a range of different validated low mass target ions.  相似文献   

12.
A series of proteins are covalently labeled when human lymphocytes are incubated with [32P]NAD+. The majority of this labeling is effectively inhibited when the lymphocytes are coincubated with 3-aminobenzamide, a potent inhibitor of poly(ADP-ribose) polymerase. However, labeling of a 72 000 molecular weight protein was resistant to the inhibitory effect of 3-aminobenzamide. Labeling of this protein from [32P]NAD+ was shown to be Mg2+-dependent. The 72 000 molecular weight protein could also be labeled on incubation with [α-32P]ATP, [γ-32P]ATP and [32P]orthophosphate, but not from [3H]NAD+ or [14C]NAD+. In the present study, we show that the 72 000 molecular weight protein is not ADP-ribosylated but rather, phosphorylated on incubation with [32P]NAD+. This phosphorylation appears to occur via an Mg2+-dependent conversion of NAD+ to AMP with the eventual utilization of the α-phosphate for phosphorylation of the 72 000 molecular weight protein.  相似文献   

13.
C Isotopomer Analysis of Glutamate by Tandem Mass Spectrometry   总被引:1,自引:0,他引:1  
Tandem mass spectrometry allows a compound to be isolated from the rest of the sample and dissociated into smaller fragments. We show here that fragmentation of glutamate mass isotopomers yields additional mass spectral data that significantly improve the analysis of metabolic fluxes compared to full-scan mass spectrometry. In order to validate the technique, tandem and full-scan mass spectrometry were used along with (13)C NMR to analyze glutamate from rat hearts perfused with three substrate mixtures (5 mM glucose plus 5 mM [2-(13)C]acetate, 5 mM [1-(13)C]glucose plus 5 U/L insulin, and 5 mM glucose plus 1 mM [3-(13)C]pyruvate). Analysis by tandem mass spectrometry showed that the enriched substrate contributed 98 +/- 2, 53 +/- 2, and 84 +/- 7%, respectively, of acetyl-coenzyme A while the rate of anaplerotic substrate entry was 7 +/- 3, 25 +/- 8, and 16 +/- 8%. Similar results were obtained with (13)C NMR data, while values from full-scan data had higher error. We believe that this is the first use of tandem mass spectrometry to determine pathway flux using (13)C-enriched substrates. Although analysis of the citric acid cycle by NMR is simpler (and more intuitive), tandem mass spectrometry has the potential to combine high sensitivity with the high information yield previously available only by NMR.  相似文献   

14.
[31P] -Nuclear magnetic resonance (NMR) spin lattice relaxation times (T1) have been measured for lecithin-nonpolar solvent-water as a function of added water for three solvents, namely, benzene, carbon tetrachloride and cyclohexane. In benzene and carbon tetrachloride systems, where spherical reverse micelles are formed, [31P]-NMR T1, values increase linearly with added water. However, in cyclohexane, the trends in the [31P]-T1 values indicate very different micellisation processes. Even at the lowest concentration of added water, the [31P]-T1 values in this solvent are substantially larger than the corresponding values in benzene and carbon tetrachloride, which is attributed to the intramolecular chlorinephosphate interaction being the weakest in cyclohexane. At a higher water content of six mols of water per mol of lecithin in cyclohexane solvent, the [31P]-T1 values show a sharp decrease indicating a sudden change in the dynamics of the phosphate group, and this confirms the on set of ‘reverse micelle-to-liquid crystalline’ phase transition observed in this system by other spectroscopic and physical techniques.  相似文献   

15.
The advantages of the organism Dictyostelium discoideum as an expression host for recombinant glycoproteins have been exploited for the production of an isotopically labeled cell surface protein for NMR structure studies. Growth medium containing [15N]NH4Cl and [13C]glycerol was used to generate isotopically labeled Escherichia coli, which was subsequently introduced to D. discoideum cells in simple Mes buffer. A variety of growth conditions were screened to establish minimal amounts of nitrogen and carbon metabolites for a cost-effective protocol. Following single-step purification by anion-exchange chromatography, 8 mg of uniformly 13C,15N-labeled protein secreted by approximately 1010D. discoideum cells was isolated from 3.3 liters of supernatant. Mass spectrometry showed the recombinant protein of 16 kDa to have incorporated greater than 99.9% isotopic label. The two-dimensional 1H-13C HSQC spectrum confirms 13C labeling of both glycan and amino acid residues of the glycoprotein. All heteronuclear NMR spectra showed a good dispersion of cross-peaks essential for high-quality structure determination.  相似文献   

16.
A simple labeling approach is presented based on protein expression in [1-13C]- or [2-13C]-glucose containing media that produces molecules enriched at methyl carbon positions or backbone Cα sites, respectively. All of the methyl groups, with the exception of Thr and Ile(δ1) are produced with isolated 13C spins (i.e., no 13C–13C one bond couplings), facilitating studies of dynamics through the use of spin-spin relaxation experiments without artifacts introduced by evolution due to large homonuclear scalar couplings. Carbon-α sites are labeled without concomitant labeling at Cβ positions for 17 of the common 20 amino acids and there are no cases for which 13Cα13CO spin pairs are observed. A large number of probes are thus available for the study of protein dynamics with the results obtained complimenting those from more traditional backbone 15N studies. The utility of the labeling is established by recording 13C R and CPMG-based experiments on a number of different protein systems.  相似文献   

17.
Human lung cancer transplanted into athymic mice contains predominantly an acidic variant (designated B1) of lysosomal arylsulfatase B. B1 enzyme was suggested to be phosphorylated and sialylated (Gasa, S., Makita, A., Kameya, T., Kodama, T., Koide, T., Tsumuraya, M., and Komai, T. (1981) Eur. J. Biochem. 116, 497-503). In order to determine the localization of phosphate in B1 enzyme, we labeled in vivo the transplanted tumor with [32P]H3PO4 or [3H]glucosamine and purified B1 enzyme by immunoprecipitation. Bio-Gel chromatography of the labeled B1 enzyme treated with endoglycosidase H demonstrated that both the excluded and included materials were labeled with 32P and 3H. From acid hydrolysate of the excluded materials, phosphorylated serine and threonine were detected. Protein phosphorylation of arylsulfatase was confirmed by in vitro labeling experiments with [gamma-32P]ATP. By incubation of the tumor homogenate with ATP followed by isolation of the enzymes, B1 enzyme had a significant amount of radioactivity, whereas the B enzyme had little; by exogenous protein kinase, partially purified B enzyme was phosphorylated 35 times more than B1 enzyme. Acid hydrolysate of the included materials in the Bio-Gel column demonstrated mannose 6-phosphate and an unknown phosphorylated compound which migrates more than Man-6-P on electrophoresis and chromatography.  相似文献   

18.
By means of glass-capillary-gas chromatography all possible benz[a]anthracene metabolites formed by rat liver microsomes (phenols, dihydrodiols, dihydrodiol enols and tetrahydrotetrols) can be separated. Mass spectra of their trimethylsilyl ethers show intense molecule ions and, in most cases, characteristic fragments. K-Region diols and their secondary oxidation products can be recognized by the ratio (m/e 147) (m/e 191) greater than 1, whereas the ratio is inverse in all other dihydrodiol trimethylsilyl ethers investigated. With the exception of 1,2-dihydrobenz[a]anthracene-1,2,3-triol all vicinal dihydrodiol enols investigated exhibit an intense elimination of the fragment CH = CH-OSiMe3 according to m/e 379. The conformation of vicinal tetrahydrobenz[a]anthracenetetrols possibly can be distinguished by the intensity of m/e 380 (M - 240) since only in those possessing two or more subsequent Me3SiO groups in the same conformation intense elimination of Me3Si-O-CH = CH-O-SiMe3 is observed. Retention times and mass spectrometric data of a series of synthetic benz[a]anthracene derivatives are presented as a base for the identification of benz[a]anthracene metabolites in biological systems.  相似文献   

19.
In atom probe tomography (APT), a technique that has been used to determine 3D maps of ion compositions of metals and semiconductors at sub-nanometer resolutions, controlled emissions of ions can be induced from needle-shaped specimens in the vicinity of a strong electric field. Detection of these ions in the plane of a position sensitive detector provides two-dimensional compositional information while the sequence of ion arrival at the detector provides information in the third dimension. Here we explore the use of APT technology for imaging biological specimens. We demonstrate that it is possible to obtain 3D spatial distributions of cellular ions and metabolites from unstained, freeze-dried mammalian cells. Multiple peaks were reliably obtained in the mass spectrum from tips with diameters of ~50 nm and heights of ~200 nm, with mass-to-charge ratios (m/z) ranging from 1 to 80. Peaks at m/z 12, 23, 28 and 39, corresponding to carbon, sodium, carbonyl and potassium ions respectively, showed distinct patterns of spatial distribution within the cell. Our studies establish that APT could become a powerful tool for mapping the sub-cellular distribution of atomic species, such as labeled metabolites, at 3D spatial resolutions as high as ~1 nm.  相似文献   

20.
The increasing use of multistage tandem mass spectrometry (MS/MS and MS (3)) methods for comprehensive phosphoproteome analysis studies, as well as the emerging application of in silico spectral intensity prediction algorithms in enhanced database search analysis strategies, necessitate the development of an improved understanding of the mechanisms and other factors that affect the gas-phase fragmentation reactions of phosphorylated peptide ions. To address this need, we have examined the multistage collision-induced dissociation (CID) behavior of a set of singly and doubly charged phosphoserine- and phosphothreonine-containing peptide ions, as well as their regioselectively or uniformly deuterated derivatives, in a quadrupole ion trap mass spectrometer. Consistent with previous reports, the neutral loss of phosphoric acid (H 3PO 4) was observed as a dominant reaction pathway upon MS/MS. The magnitude of this loss was found to be highly dependent on the proton mobility of the precursor ion for both phosphoserine- and phosphothreonine-containing peptides. In contrast to that currently accepted in the literature, however, the results obtained in this study unequivocally demonstrate that the loss of H 3PO 4 does not predominantly occur via a "charge-remote" beta-elimination reaction. The observation of product ions corresponding to the loss of formaldehyde (CH 2O, 30 Da, or CD 2O, 32 Da) or acetaldehyde (CH 3CHO, 44 Da) upon MS (3) dissociation of the [M+ nH-H 3PO 4] ( n+ ) product ions from phosphoserine- and phosphothreonine-containing peptide ions, respectively, provide experimental evidence for a "charge-directed" mechanism involving an S N2 neighboring group participation reaction, resulting in the formation of a cyclic product ion. Potentially, these "diagnostic" MS (3) product ions may provide additional information to facilitate the characterization of phosphopeptides containing multiple potential phosphorylation sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号