首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The eukaryotic RecA homologues RAD51 and DMC1 function in homology recognition and formation of joint-molecule recombination intermediates during yeast meiosis. The precise immunolocalization of these two proteins on the meiotic chromosomes of plants and animals has been complicated by their high degree of identity at the amino acid level. With antibodies that have been immunodepleted of cross-reactive epitopes, we demonstrate that RAD51 and DMC1 have identical distribution patterns in extracts of mouse spermatocytes in successive prophase I stages, suggesting coordinate functionality. Immunofluorescence and immunoelectron microscopy with these antibodies demonstrate colocalization of the two proteins on the meiotic chromosome cores at early prophase I. We also show that mouse RAD51 and DMC1 establish protein-protein interactions with each other and with the chromosome core component COR1(SCP3) in a two-hybrid system and in vitro binding analyses. These results suggest that the formation of a multiprotein recombination complex associated with the meiotic chromosome cores is essential for the development and fulfillment of the meiotic recombination process.  相似文献   

3.
Li W  Ma H 《Cell research》2006,16(5):402-412
Meiotic prophase I is a long and complex phase. Homologous recombination is an important process that occurs between homologous chromosomes during meiotic prophase I. Formation of chiasmata, which hold homologous chromosomes together until the metaphase I to anaphase I transition, is critical for proper chromosome segregation. Recent studies have suggested that the SPO 11 proteins have conserved functions in a number of organisms in generating sites of double-stranded DNA breaks (DSBs) that are thought to be the starting points of homologous recombination. Processing of these sites of DSBs requires the function of RecA homologs, such as RAD5 1, DMC 1, and others, as suggested by mutant studies; thus the failure to repair these meiotic DSBs results in abnormal chromosomal alternations, leading to disrupted meiosis. Recent discoveries on the functions of these RecA homologs have improved the understanding of the mechanisms underlying meiotic homologous recombination.  相似文献   

4.
Homologous recombination (HR) reactions mediated by the RAD51 recombinase are essential for DNA and replication fork repair, genome stability, and tumor suppression. RAD51-associated protein 1 (RAD51AP1) is an important HR factor that associates with and stimulates the recombinase activity of RAD51. We have recently shown that RAD51AP1 also partners with the meiotic recombinase DMC1, displaying isoform-specific interactions with DMC1. Here, we have characterized the DMC1 interaction site in RAD51AP1 by a series of truncations and point mutations to uncover a highly conserved WVPP motif critical for DMC1 interaction but dispensable for RAD51 association. This RAD51AP1 motif is reminiscent of the FVPP motif in the tumor suppressor protein BRCA2 that mediates DMC1 interaction. These results further implicate RAD51AP1 in meiotic HR via RAD51 and DMC1.  相似文献   

5.
The Escherichia coli gene recA is essential for homologous recombination and DNA repair, and homologs have been identified in eukaryotes. A basidiomycete, Coprinus cinereus, which has many advantages for the study of meiosis, was recently reported to have a homolog of one of these, RAD51. In the yeast Saccharomyces, mutations in the RAD5I gene cause defects in both somatic and meiotic cells. Based on this finding, we screened for a meiosis-specific homolog of recA, equivalent to Lilium LIM15 or Saccharomyces DMC1, in C. cinereus, and isolated a clone containing a 1.2-kb DNA fragment from a cDNA library constructed with Coprinus poly(A)+ RNA isolated from cells undergoing meiosis. The predicted amino acid sequence was 52% identical to the putative gene product of the lily cDNA clone LIM15 and 61% identical to Saccharomyces DMC1, and showed limited sequence similarity to the products of RAD52, 55, and 57. The synchrony of meiosis in Coprinus provides an ideal system for the investigation of differential gene expression in relation to meiosis and fruiting body development. Northern analysis indicated that Coprinus LIM15/DMC1 was expressed at meiotic prophase within 8 h after the onset of karyogamy, suggesting that the gene functions mostly at the stage at which the homologous chromosomes pair, but may not be essential at the point at which they recombine. The gene is not expressed in somatic cells. Received: 8 October 1998 / Accepted: 22 July 1999  相似文献   

6.
Topoisomerase IIβ-binding protein 1 (TopBP1) is BRCT domain-containing protein that is required for DNA double-strand break (DSB) repair and DNA damage responses; however, its function during the early stage of spermatogenesis is still unclear. To investigate the physiological role of TopBP1, we have generated germ cell-specific TopBP1-depleted mouse model. TopBP1-deleted mice were infertile, showed a loss of germ cells and had meiotic defects. Conditional TopBP1 deletion resulted in reduced testis size, reduced number of epididymal sperm, increased apoptosis, and severely compromised fertility. TopBP1 deficiency caused defects in DMC1 and Rad51 foci formation, abnormal synaptonemal complexes and meiotic chromosome defects. Collectively, these results suggest that TopBP1 deficiency during spermatogenesis impairs the localization of proteins involved in early recombination at DSBs, results in meiotic chromosome defects and leads to infertility.  相似文献   

7.
Genome stability relies on faithful DNA repair both in mitosis and in meiosis. Here, we report on a Caenorhabditis elegans protein that we found to be homologous to the mammalian repair-related protein CtIP and to the budding yeast Com1/Sae2 recombination protein. A com-1 mutant displays normal meiotic chromosome pairing but forms irregular chromatin aggregates instead of diakinesis bivalents. While meiotic DNA double-strand breaks (DSBs) are formed, they appear to persist or undergo improper repair. Despite the presence of DSBs, the recombination protein RAD-51, which is known to associate with single-stranded DNA (ssDNA) flanking DSBs, does not localize to meiotic chromosomes in the com-1 mutant. Exposure of the mutant to gamma-radiation, however, induces RAD-51 foci, which suggests that the failure of RAD-51 to load is specific to meiotic (SPO-11-generated) DSBs. These results suggest that C. elegans COM-1 plays a role in the generation of ssDNA tails that can load RAD-51, invade homologous DNA tracts and thereby initiate recombination. Extrapolating from the worm homolog, we expect similar phenotypes for mutations in the mammalian tumor suppressor CtIP.  相似文献   

8.
A recA-like gene was identified in the genome of Arabidopsisthaliana by means of PCR using primers designed on the basisof previously reported amino acid sequences of eukaryotic RecA-likeproteins. The structure of the gene, termed ArLIM15, was investigatedby comparing the primary structure of the genomic DNA with thatof the corresponding cDNA. The open reading frame, which wassplit into 15 exons, was established to have the capacity forencoding a 37.3-kDa polypeptide. The amino acid sequence ofthe putative product of ArLIM15 showed a high degree of similaritytothat of LIM15 in the monocotyledonous plant Lilium, includinga 93% identity, and to those of other recA-like genes in yeastsand vertebrates with identities of 69–71%. Phylogeneticanalysis indicated ArLIM15 to be much closer to meiosis-specificLIM15 and DMC1 in Saccharomyces cerevisiae than to RAD51 inS. cerevisiae and its homologues on an evolutionary scale.  相似文献   

9.
Sensitivity of meiotic cells to DNA damaging agents is little understood. We have demonstrated that the meiotic pachytene nuclei in the Caenorhabditis elegans gonad are hyper-resistant to X-ray irradiation, but not to UV irradiation, whereas the early embryonic cells after fertilization and the full grown oocytes are not. The Ce-rdh-1 gene [RAD51, DMC1 (LIM15), homolog 1 or Ce-rad-51], which is essential for the meiotic recombination, is the only bacterial recA-like gene in the nematode genome, and is strongly expressed in the meiotic cells. Following silencing of the Ce-rdh-1 gene by RNA interference, the meiotic cells become more sensitive to X-ray irradiation than the early embryonic cells. This is the first report that meiotic cells are hyper-resistant to DNA strand breaks due to the high level of expression of the enzyme(s) involved in meiotic homologous recombination.  相似文献   

10.
    
The eukaryotic recombinases RAD51 and DMC1 are essential for DNA strand-exchange between homologous chromosomes during meiosis. RAD51 is also expressed during mitosis, and mediates homologous recombination (HR) between sister chromatids. It has been suggested that DMC1 might be involved in the switch from intersister chromatid recombination in somatic cells to interhomolog meiotic recombination. At meiosis, the Arabidopsis Atrad51 null mutant fails to synapse and has extensive chromosome fragmentation. The Atdmc1 null mutant is also asynaptic, but in this case chromosome fragmentation is absent. Thus in plants, AtDMC1 appears to be indispensable for interhomolog homologous recombination, whereas AtRAD51 seems to be more involved in intersister recombination. In this work, we have studied a new AtRAD51 knock-down mutant, Atrad51-2, which expresses only a small quantity of RAD51 protein. Atrad51-2 mutant plants are sterile and hypersensitive to DNA double-strand break induction, but their vegetative development is apparently normal. The meiotic phenotype of the mutant consists of partial synapsis, an elevated frequency of univalents, a low incidence of chromosome fragmentation and multivalent chromosome associations. Surprisingly, non-homologous chromosomes are involved in 51% of bivalents. The depletion of AtDMC1 in the Atrad51-2 background results in the loss of bivalents and in an increase of chromosome fragmentation. Our results suggest that a critical level of AtRAD51 is required to ensure the fidelity of HR during interchromosomal exchanges. Assuming the existence of asymmetrical DNA strand invasion during the initial steps of recombination, we have developed a working model in which the initial step of strand invasion is mediated by AtDMC1, with AtRAD51 required to check the fidelity of this process.  相似文献   

11.
12.
The meiotically expressed Zip3 protein is found conserved from Saccharomyces cerevisiae to humans. In baker's yeast, Zip3p has been implicated in synaptonemal complex (SC) formation, while little is known about the protein's function in multicellular organisms. We report here the successful targeted gene disruption of zhp-3 (K02B12.8), the ZIP3 homolog in the nematode Caenorhabditis elegans. Homozygous zhp-3 knockout worms show normal homologue pairing and SC formation. Also, the timing of appearance and the nuclear localization of the recombination protein Rad-51 seem normal in these animals, suggesting proper initiation of meiotic recombination by DNA double-strand breaks. However, the occurrence of univalents during diplotene indicates that C. elegans ZHP-3 protein is essential for reciprocal recombination between homologous chromosomes and thus chiasma formation. In the absence of ZHP-3, reciprocal recombination is abolished and double-strand breaks seem to be repaired via alternative pathways, leading to achiasmatic chromosomes and the occurrence of univalents during meiosis I. Green fluorescent protein-tagged C. elegans ZHP-3 forms lines between synapsed chromosomes and requires the SC for its proper localization.  相似文献   

13.
In prokaryotes, the RecA protein plays a pivotal role in homologous recombination, catalyzing the transfer of a single DNA strand into an homologous molecule. Structural homologs of the bacterial RecA protein, called Rad51, have been found in different eukaryotes (from yeast to man), suggesting a certain level of conservation in recombination pathways among living organisms. We have cloned the homolog of RAD51 in Caenorhabditis elegans. The CeRAD51 gene is transcribed into two alternative mRNAs and potentially codes for two proteins of 395 and 357 amino acids in length, respectively. We discuss the evolutionary implications of these findings. Received: 26 May 1998 / Accepted: 18 August 1998  相似文献   

14.
The paper presents the analysis of the frequency, density, and distribution of recombination sites in the male meiosis of the domestic cat (Felis silvestris catus). The study was carried out using immunofluorescent staining of synaptonemal complex (SC) proteins, centromeric proteins and mismatch repair protein MLH1, a reliable marker of crossingover sites. We mapped 2633 sites of crossing over in 1098 individual autosomes. Based on these data, we estimated the total length of the genetic map of the domestic cat to be 2176 centimorgans. Positive correlation between the length of SC and the number of recombination sites common for mammalians was also found in the domestic cat. It was shown that this species was characterized by the highest density of recombination and the lowest interference in mammals.  相似文献   

15.
Although chromosomal segregation at meiosis I is the critical process for genetic reassortment and inheritance, little is known about molecules involved in this process in metazoa. Here we show by utilizing double-stranded RNA (dsRNA)-mediated genetic interference that novel protein kinases (Ce-CDS-1 and Ce-CDS-2) related to Cds1 (Chk2) play an essential role in meiotic recombination in Caenorhabditis elegans. Injection of dsRNA into adult animals resulted in the inhibition of meiotic crossing over and induced the loss of chiasmata at diakinesis in oocytes of F(1) animals. However, electron microscopic analysis revealed that synaptonemal complex formation in pachytene nuclei of the same progeny of injected animals appeared to be normal. Thus, Ce-CDS-1 and Ce-CDS-2 are the first example of Cds1-related kinases that are required for meiotic recombination in multicellular organisms.  相似文献   

16.
An ATM-like gene was identified in the genome of Caenorhabditis elegans. The putative product of the gene, termed Ce-atl-1 (C. elegans ATM-like 1) consists of 2514 amino acid residues. The C-terminal sequence, which contains a PI-3 kinase-like domain, showed good homology with the products of the gene MEC1/ESR1 from budding yeast, the rad3+ gene of fission yeast and mammalian ATM (ataxia-telangiectasia and rad3+ related) genes. The results of RNA-mediated interference indicated that the major phenotype associated with repression of Ce-atl-1 was lethality (approximately 50-80%) during early embryogenesis. Among the surviving progeny, males (XO animals) arose at a high frequency (2-30%). In addition, 5% of oocyte chromosomes demonstrated aneuploidy due to a defect in pre-meiotic chromosomal segregation. Gene expression analyses indicated that Ce-atl-1 mRNA was expressed in all larval stages and that its level increased about fivefold in the adult stage. The adult expression level was decreased in the glp-4 mutant, which is defective in germ line proliferation. Ce-atl-1 was strongly expressed in both the mitotic and meiotic cells of adult gonads. In summary, Ce-atl-1 appears to be important for early embryogenesis, and loss of its function results in a defect in chromosome segregation, similar to what has been observed for AT-related proteins.  相似文献   

17.
减数分裂重组不仅保证了真核生物有性生殖过程中染色体数量的稳定,还通过父母亲本间遗传物质的互换在后代中产生遗传变异。因此,减数分裂重组是遗传多样性形成的重要途径,也是生物多样性和物种进化的主要动力。在绝大多数真核生物中,不管染色体数目的多少或基因组的大小,减数分裂重组的形成都受到严格的调控,但抑制减数分裂重组的分子机理目前仍不清楚。近年来,通过正向遗传学筛选鉴定出多个减数分裂重组抑制基因,揭示了抑制基因的功能和调控途径。本文基于拟南芥中减数分裂重组抑制基因的研究现状,综述了植物减数分裂重组抑制基因研究取得的突破性进展,并结合基因功能与其调控网络阐述了抑制植物减数分裂重组的分子机理。  相似文献   

18.
A gene encoding the alpha-subunit of a guanine nucleotide binding regulatory protein (G-protein) was isolated from a library of genomic Caenorhabditis elegans DNA. The predicted coding region is colinear to related genes from mammals and the 356 amino acid residues show 63% sequence identity to e.g. rat Gi alpha 2. Three of the eight introns within the coding sequence are at exactly the same positions as those in a Drosophila G-protein alpha-subunit gene, and two of these are also conserved in the mammalian homologues. The nematode gene does not encode the cysteine residue that forms the substrate site for pertussis toxin-catalyzed ADP-ribosylation in several G-proteins. In spite of the similarity to mammalian G-protein alpha-subunit genes the gene can not unambiguously be categorized in one of the classes of G-proteins recognized in mammals (G alpha i, o, z, etc.). The position of the gene on the physical map of the animal was determined (chromosome V). The cloning and sequencing of this gene can be the starting point of reverse genetics experiments aimed at the isolation of animals mutated in a G-protein alpha-subunit gene.  相似文献   

19.
Wheeler JM  Thomas JH 《Genetics》2006,174(3):1327-1336
Organisms exposed to the damaging effects of high osmolarity accumulate solutes to increase cytoplasmic osmolarity. Yeast accumulates glycerol in response to osmotic stress, activated primarily by MAP kinase Hog1 signaling. A pathway regulated by protein kinase C (PKC1) also responds to changes in osmolarity and cell wall integrity. C. elegans accumulates glycerol when exposed to high osmolarity, but the molecular pathways responsible for this are not well understood. We report the identification of two genes, osm-7 and osm-11, which are related members of a novel gene family. Mutations in either gene lead to high internal levels of glycerol and cause an osmotic resistance phenotype (Osr). These mutants also have an altered defecation rhythm (Dec). Mutations in cuticle collagen genes dpy-2, dpy-7, and dpy-10 cause a similar Osr Dec phenotype. osm-7 is expressed in the hypodermis and may be secreted. We hypothesize that osm-7 and osm-11 interact with the cuticle, and disruption of the cuticle causes activation of signaling pathways that increase glycerol production. The phenotypes of osm-7 are not suppressed by mutations in MAP kinase or PKC pathways, suggesting that C. elegans uses signaling pathways different from yeast to mount a response to osmotic stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号