首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Sensitivity of meiotic cells to DNA damaging agents is little understood. We have demonstrated that the meiotic pachytene nuclei in the Caenorhabditis elegans gonad are hyper-resistant to X-ray irradiation, but not to UV irradiation, whereas the early embryonic cells after fertilization and the full grown oocytes are not. The Ce-rdh-1 gene [RAD51, DMC1 (LIM15), homolog 1 or Ce-rad-51], which is essential for the meiotic recombination, is the only bacterial recA-like gene in the nematode genome, and is strongly expressed in the meiotic cells. Following silencing of the Ce-rdh-1 gene by RNA interference, the meiotic cells become more sensitive to X-ray irradiation than the early embryonic cells. This is the first report that meiotic cells are hyper-resistant to DNA strand breaks due to the high level of expression of the enzyme(s) involved in meiotic homologous recombination.  相似文献   

2.
Both LIM15/DMC1 and RAD51 are thought to be essential for meiosis in which homologous chromosomes pair and recombine. The primary purpose of the present study was to investigate the homotypic and heterotypic interactions among their terminal domains. We prepared cDNAs and recombinant proteins of the full-length, N-terminal, and the C-terminal domains of LIM15/DMC1 (CoLIM15) and RAD51 (CoRAD51) from the basidiomycete Coprinus cinereus. In both two-hybrid assay in vivo and pull-down assay in vitro, either CoLim15 or CoRad51 interacted homotypically between the C-terminal domains, respectively, but no heterotypic interaction was observed between CoLim15 and CoRad51. The N-terminal domain of CoLim15 bound to ssDNA and dsDNA, while the C-terminal domain of CoRad51 appeared to interact weakly with ssDNA. Based on these results, the interaction among the strand-exchange proteins and meiosis was discussed.  相似文献   

3.
The Escherichia coli gene recA is essential for homologous recombination and DNA repair, and homologs have been identified in eukaryotes. A basidiomycete, Coprinus cinereus, which has many advantages for the study of meiosis, was recently reported to have a homolog of one of these, RAD51. In the yeast Saccharomyces, mutations in the RAD5I gene cause defects in both somatic and meiotic cells. Based on this finding, we screened for a meiosis-specific homolog of recA, equivalent to Lilium LIM15 or Saccharomyces DMC1, in C. cinereus, and isolated a clone containing a 1.2-kb DNA fragment from a cDNA library constructed with Coprinus poly(A)+ RNA isolated from cells undergoing meiosis. The predicted amino acid sequence was 52% identical to the putative gene product of the lily cDNA clone LIM15 and 61% identical to Saccharomyces DMC1, and showed limited sequence similarity to the products of RAD52, 55, and 57. The synchrony of meiosis in Coprinus provides an ideal system for the investigation of differential gene expression in relation to meiosis and fruiting body development. Northern analysis indicated that Coprinus LIM15/DMC1 was expressed at meiotic prophase within 8 h after the onset of karyogamy, suggesting that the gene functions mostly at the stage at which the homologous chromosomes pair, but may not be essential at the point at which they recombine. The gene is not expressed in somatic cells. Received: 8 October 1998 / Accepted: 22 July 1999  相似文献   

4.
A recA-like gene was identified in the genome of Arabidopsisthaliana by means of PCR using primers designed on the basisof previously reported amino acid sequences of eukaryotic RecA-likeproteins. The structure of the gene, termed ArLIM15, was investigatedby comparing the primary structure of the genomic DNA with thatof the corresponding cDNA. The open reading frame, which wassplit into 15 exons, was established to have the capacity forencoding a 37.3-kDa polypeptide. The amino acid sequence ofthe putative product of ArLIM15 showed a high degree of similaritytothat of LIM15 in the monocotyledonous plant Lilium, includinga 93% identity, and to those of other recA-like genes in yeastsand vertebrates with identities of 69–71%. Phylogeneticanalysis indicated ArLIM15 to be much closer to meiosis-specificLIM15 and DMC1 in Saccharomyces cerevisiae than to RAD51 inS. cerevisiae and its homologues on an evolutionary scale.  相似文献   

5.
Thorslund T  Esashi F  West SC 《The EMBO journal》2007,26(12):2915-2922
Germline mutations in BRCA2 predispose to hereditary breast cancers. BRCA2 protein regulates recombinational repair by interaction with RAD51 via a series of degenerate BRC repeat motifs encoded by exon 11 (BRCA2(996-2113)), and an unrelated C-terminal domain (BRCA2(3265-3330)). BRCA2 is also required for meiotic recombination. Here, we show that human BRCA2 binds the meiosis-specific recombinase DMC1 and define the primary DMC1 interaction site to a 26 amino-acid region (BRCA2(2386-2411)). This region is highly conserved in BRCA2 proteins from a variety of mammalian species, but is absent in BRCA2 from Arabidopsis thaliana, Caenorhabditis elegans, and other eukaryotes. We demonstrate the critical importance of Phe2406, Pro2408, and Pro2409 at the conserved motif (2404)KVFVPPFK(2411). This interaction domain, defined as the PhePP motif, promotes specific interactions between BRCA2 and DMC1, but not with RAD51. Thus, the RAD51 and DMC1 interaction domains on BRCA2 are distinct from each other, allowing coordinated interactions of the two recombinases with BRCA2 at meiosis. These results lead us to suggest that BRCA2 is a universal regulator of RAD51/DMC1 recombinase actions.  相似文献   

6.
Homologous recombination (HR) reactions mediated by the RAD51 recombinase are essential for DNA and replication fork repair, genome stability, and tumor suppression. RAD51-associated protein 1 (RAD51AP1) is an important HR factor that associates with and stimulates the recombinase activity of RAD51. We have recently shown that RAD51AP1 also partners with the meiotic recombinase DMC1, displaying isoform-specific interactions with DMC1. Here, we have characterized the DMC1 interaction site in RAD51AP1 by a series of truncations and point mutations to uncover a highly conserved WVPP motif critical for DMC1 interaction but dispensable for RAD51 association. This RAD51AP1 motif is reminiscent of the FVPP motif in the tumor suppressor protein BRCA2 that mediates DMC1 interaction. These results further implicate RAD51AP1 in meiotic HR via RAD51 and DMC1.  相似文献   

7.
The eukaryotic RecA homologues RAD51 and DMC1 function in homology recognition and formation of joint-molecule recombination intermediates during yeast meiosis. The precise immunolocalization of these two proteins on the meiotic chromosomes of plants and animals has been complicated by their high degree of identity at the amino acid level. With antibodies that have been immunodepleted of cross-reactive epitopes, we demonstrate that RAD51 and DMC1 have identical distribution patterns in extracts of mouse spermatocytes in successive prophase I stages, suggesting coordinate functionality. Immunofluorescence and immunoelectron microscopy with these antibodies demonstrate colocalization of the two proteins on the meiotic chromosome cores at early prophase I. We also show that mouse RAD51 and DMC1 establish protein-protein interactions with each other and with the chromosome core component COR1(SCP3) in a two-hybrid system and in vitro binding analyses. These results suggest that the formation of a multiprotein recombination complex associated with the meiotic chromosome cores is essential for the development and fulfillment of the meiotic recombination process.  相似文献   

8.
Ensuring balanced distribution of chromosomes in gametes, meiotic recombination is essential for fertility in most sexually reproducing organisms. The repair of the programmed DNA double strand breaks that initiate meiotic recombination requires two DNA strand-exchange proteins, RAD51 and DMC1, to search for and invade an intact DNA molecule on the homologous chromosome. DMC1 is meiosis-specific, while RAD51 is essential for both mitotic and meiotic homologous recombination. DMC1 is the main catalytically active strand-exchange protein during meiosis, while this activity of RAD51 is downregulated. RAD51 is however an essential cofactor in meiosis, supporting the function of DMC1. This work presents a study of the mechanism(s) involved in this and our results point to DMC1 being, at least, a major actor in the meiotic suppression of the RAD51 strand-exchange activity in plants. Ectopic expression of DMC1 in somatic cells renders plants hypersensitive to DNA damage and specifically impairs RAD51-dependent homologous recombination. DNA damage-induced RAD51 focus formation in somatic cells is not however suppressed by ectopic expression of DMC1. Interestingly, DMC1 also forms damage-induced foci in these cells and we further show that the ability of DMC1 to prevent RAD51-mediated recombination is associated with local assembly of DMC1 at DNA breaks. In support of our hypothesis, expression of a dominant negative DMC1 protein in meiosis impairs RAD51-mediated DSB repair. We propose that DMC1 acts to prevent RAD51-mediated recombination in Arabidopsis and that this down-regulation requires local assembly of DMC1 nucleofilaments.  相似文献   

9.
The DMC1 protein, a eukaryotic homologue of RecA that shares significant amino acid identity with RAD51, exhibits two oligomeric DNA binding forms, an octameric ring and a helical filament. In the crystal structure of the octameric ring form, the DMC1 N-terminal domain (1-81 amino acid residues) was highly flexible, with multiple conformations. On the other hand, the N-terminal domain of Rad51 makes specific interactions with the neighboring ATPase domain in the helical filament structure. To gain insights into the functional role of the N-terminal domain of DMC1, we prepared a deletion mutant, DMC1-(82-340), that lacks the N-terminal 81 amino acid residues from the human DMC1 protein. Analytical ultracentrifugation experiments revealed that, whereas full-length DMC1 forms a octamer, DMC1-(82-340) is a heptamer. Furthermore, DNA binding experiments showed that DMC1-(82-340) was completely defective in both single-stranded and double-stranded DNA binding activities. Therefore, the N-terminal domain of DMC1 is required for the formation of the octamer, which may support the proper DNA binding activity of the DMC1 protein.  相似文献   

10.
Meiosis is a fundamental process for sexual reproduction in most eukaryotes and the evolutionarily conserved recombinases RADiation sensitive51 (RAD51) and Disrupted Meiotic cDNA1 (DMC1) are essential for meiosis and thus fertility. The mitotic function of RAD51 is clear, but the meiotic function of RAD51 remains largely unknown. Here we show that RAD51 functions as an interacting protein to restrain the Structural Maintenance of Chromosomes5/6 (SMC5/6) complex from inhibiting DMC1. We unexpectedly found that loss of the SMC5/6 partially suppresses the rad51 knockout mutant in terms of sterility, pollen inviability, and meiotic chromosome fragmentation in a DMC1-dependent manner in Arabidopsis thaliana. Biochemical and cytological studies revealed that the DMC1 localization in meiotic chromosomes is inhibited by the SMC5/6 complex, which is attenuated by RAD51 through physical interactions. This study not only identified the long-sought-after function of RAD51 in meiosis but also discovered the inhibition of SMC5/6 on DMC1 as a control mechanism during meiotic recombination.

RAD51 functions as an interacting protein to restrain the SMC5/6 complex from inhibiting DMC1 during meiosis.  相似文献   

11.
The human RAD54B protein is a paralog of the RAD54 protein, which plays important roles in homologous recombination. RAD54B contains an N-terminal region outside the SWI2/SNF2 domain that shares less conservation with the corresponding region in RAD54. The biochemical roles of this region of RAD54B are not known, although the corresponding region in RAD54 is known to physically interact with RAD51. In the present study, we have biochemically characterized an N-terminal fragment of RAD54B, consisting of amino acid residues 26–225 (RAD54B26–225). This fragment formed a stable dimer in solution and bound to branched DNA structures. RAD54B26–225 also interacted with DMC1 in both the presence and absence of DNA. Ten DMC1 segments spanning the entire region of the DMC1 sequence were prepared, and two segments, containing amino acid residues 153–214 and 296–340, were found to directly bind to the N-terminal domain of RAD54B. A structural alignment of DMC1 with the Methanococcus voltae RadA protein, a homolog of DMC1 in the helical filament form, indicated that these RAD54B-binding sites are located near the ATP-binding site at the monomer–monomer interface in the DMC1 helical filament. Thus, RAD54B binding may affect the quaternary structure of DMC1. These observations suggest that the N-terminal domain of RAD54B plays multiple roles of in homologous recombination.  相似文献   

12.
 A gene encoding a RecA/RAD51 homologue from a hyperthermophilic archaeon, Pyrococcus sp. KOD1 (Pk), was cloned, sequenced and expressed in Escherichia coli. The deduced 210-amino acid sequence was compared to homologues from bacteria (RecA), eukaryotes (RAD51, DMC1) and archaea (RadA). The entire protein from Pk (Pk-REC) basically corresponds to the essential central domain of its counterparts and lacks the two smaller RecA subdomains at the N- and C-termini. The sequence comparison suggests that Pk-REC represents a common prototype of RecA, RAD51, DMC1 and RadA, with higher enzymatic activity. Recombinant Pk-REC was fully active and complemented the ultraviolet light sensitivity of an E. coli recA mutant strain. Received: 11 June 1996 / Accepted: August 31 1996  相似文献   

13.
Meiotic crossover(CO) formation between homologous chromosomes ensures their subsequent proper segregation and generates genetic diversity among offspring. In maize, however, the mechanisms that modulate CO formation remain poorly characterized. Here, we found that both maize BREAST CANCER SUSCEPTIBILITY PROTEIN 2(BRCA2) and AAA-ATPase FIDGETIN-LIKE-1(FIGL1)act as positive factors of CO formation by controlling the assembly or/and stability of two conserved DNA recombinases RAD51 and DMC1 filame...  相似文献   

14.
15.
Meiosis ensures the reduction of the genome before the formation of generative cells and promotes the exchange of genetic information between homologous chromosomes by recombination. Essential for these events are programmed DNA double strand breaks (DSBs) providing single-stranded DNA overhangs after their processing. These overhangs, together with the RADiation sensitive51 (RAD51) and DMC1 Disrupted Meiotic cDNA1 (DMC1) recombinases, mediate the search for homologous sequences. Current models propose that the two ends flanking a meiotic DSB have different fates during DNA repair, but the molecular details remained elusive. Here we present evidence, obtained in the model plant Arabidopsis thaliana, that the two recombinases, RAD51 and DMC1, localize to opposite sides of a meiotic DSB. We further demonstrate that the ATR kinase is involved in regulating DMC1 deposition at meiotic DSB sites, and that its elimination allows DMC1-mediated meiotic DSB repair even in the absence of RAD51. DMC1's ability to promote interhomolog DSB repair is not a property of the protein itself but the consequence of an ASYNAPTIC1 (Hop1)-mediated impediment for intersister repair. Taken together, these results demonstrate that DMC1 functions independently and spatially separated from RAD51 during meiosis and that ATR is an integral part of the regular meiotic program.  相似文献   

16.
We previously cloned recA-homolog genes from a basidiomycete, Coprinus cinereus, and obtained the recombinant proteins (Nara et al., Mol. Gen. Genet. 262, 781-789, 1999, see Ref. 1; Nara and Sakaguchi, Biochem. Biophys. Res. Commun. 275, 97-102, 2000, see Ref. 2). The primary purpose of the present study was to characterize the biochemical properties of the recombinant LIM15/DMC1 (CoLIM15) and RAD51 (CoRAD51) proteins. We purified the recombinant proteins, and their molecular masses were 37 and 35 kDa, respectively. Both enzymes showed DNA-dependent ATPase activity and ATP-dependent strand exchange reaction in vitro. CoRad51 was a five- to sixfold stronger DNA-dependent ATPase and showed greater dependency on single-stranded DNA than CoLim15. In meiosis, both enzymes were highly accumulated in the meiotic tissue at leptotene and zygotene stages at which the homologous chromosomes pair, but disappeared just before the pachytene stage at which they recombine. From these and the previously reported results, we discuss here the relationships between the enzymes and meiosis.  相似文献   

17.
DMC1 and RAD51 are conserved recombinases that catalyze homologous recombination. DMC1 and RAD51 share similar properties in DNA binding, DNA-stimulated ATP hydrolysis, and catalysis of homologous DNA strand exchange. A large body of evidence indicates that attenuation of ATP hydrolysis leads to stabilization of the RAD51-ssDNA presynaptic filament and enhancement of DNA strand exchange. However, the functional relationship of ATPase activity, presynaptic filament stability, and DMC1-mediated homologous DNA strand exchange has remained largely unexplored. To address this important question, we have constructed several mutant variants of human DMC1 and characterized them biochemically to gain mechanistic insights. Two mutations, K132R and D223N, that change key residues in the Walker A and B nucleotide-binding motifs ablate ATP binding and render DMC1 inactive. On the other hand, the nucleotide-binding cap D317K mutant binds ATP normally but shows significantly attenuated ATPase activity and, accordingly, forms a highly stable presynaptic filament. Surprisingly, unlike RAD51, presynaptic filament stabilization achieved via ATP hydrolysis attenuation does not lead to any enhancement of DMC1-catalyzed homologous DNA pairing and strand exchange. This conclusion is further supported by examining wild-type DMC1 with non-hydrolyzable ATP analogues. Thus, our results reveal an important mechanistic difference between RAD51 and DMC1.  相似文献   

18.
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified in yeast (Rad55, Rad57 and Dmc1), plants and vertebrates (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1). RAD51 and DMC1 are the strand-exchange proteins forming a nucleofilament for strand invasion, however, the function of the paralogues in the process of homologous recombination is less clear. In yeast the two Rad51 paralogues, Rad55 and Rad57, have been shown to be involved in somatic and meiotic HR and they are essential to the formation of the Rad51/DNA nucleofilament counterbalancing the anti-recombinase activity of the SRS2 helicase. Here, we examined the role of RAD51B in the model bryophyte Physcomitrella patens. Mutant analysis shows that RAD51B is essential for the maintenance of genome integrity, for resistance to DNA damaging agents and for gene targeting. Furthermore, we set up methods to investigate meiosis in Physcomitrella and we demonstrate that the RAD51B protein is essential for meiotic homologous recombination. Finally, we show that all these functions are independent of the SRS2 anti-recombinase protein, which is in striking contrast to what is found in budding yeast where the RAD51 paralogues are fully dependent on the SRS2 anti-recombinase function.  相似文献   

19.
The association of ATR protein with mouse meiotic chromosome cores   总被引:9,自引:0,他引:9  
The ATR (ataxia telangiectasia- and RAD3-related) protein is present on meiotic prophase chromosome cores and paired cores (synaptonemal complexes, SCs). Its striking characteristic is that the protein forms dense aggregates on the cores and SCs of the last chromosomes to pair at the zygotene-pachytene transition. It would appear that the ATR protein either signals delays in pairing or it is directly involved in the completion of the pairing phase. Atm-deficient spermatocytes, which are defective in the chromosome pairing phase, accumulate large amounts of ATR. The behaviour of ATR at meiotic prophase sets it apart from the distribution of the RAD51/DMC1 recombinase complex and our electron microscope observations confirm that they do not co-localize. We failed to detect ATM in association with cores/SCs and we have reported elsewhere that RAD1 protein does not co-localize with DMC1 foci. The expectation that putative DNA-damage checkpoint proteins, ATR, ATM and RAD1, are associated with RAD51/DMC1 recombination sites where DNA breaks are expected to be present, is therefore not supported by our observations. Received: 23 November 1998 / Accepted: 3 January 1999  相似文献   

20.
Recombination establishes the chiasmata that physically link pairs of homologous chromosomes in meiosis, ensuring their balanced segregation at the first meiotic division and generating genetic variation. The visible manifestation of genetic crossing-overs, chiasmata are the result of an intricate and tightly regulated process involving induction of DNA double-strand breaks and their repair through invasion of a homologous template DNA duplex, catalysed by RAD51 and DMC1 in most eukaryotes. We describe here a RAD51-GFP fusion protein that retains the ability to assemble at DNA breaks but has lost its DNA break repair capacity. This protein fully complements the meiotic chromosomal fragmentation and sterility of Arabidopsis rad51, but not rad51 dmc1 mutants. Even though DMC1 is the only active meiotic strand transfer protein in the absence of RAD51 catalytic activity, no effect on genetic map distance was observed in complemented rad51 plants. The presence of inactive RAD51 nucleofilaments is thus able to fully support meiotic DSB repair and normal levels of crossing-over by DMC1. Our data demonstrate that RAD51 plays a supporting role for DMC1 in meiotic recombination in the flowering plant, Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号