首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D S Campbell  C E Holt 《Neuron》2001,32(6):1013-1026
Growth cones contain mRNAs, translation machinery, and, as we report here, protein degradation machinery. We show that isolated retinal growth cones immediately lose their ability to turn in a chemotropic gradient of netrin-1 or Sema3A when translation is inhibited. Translation inhibition also prevents Sema3A-induced collapse, while LPA-induced collapse is not affected. Inhibition of proteasome function blocks responses to netrin-1 and LPA but does not affect Sema3A responses. We further demonstrate in isolated growth cones that netrin-1 and Sema3A activate translation initiation factors and stimulate a marked rise in protein synthesis within minutes, while netrin-1 and LPA elicit similar rises in ubiquitin-protein conjugates. These results suggest that guidance molecules steer axon growth by triggering rapid local changes in protein levels in growth cones.  相似文献   

2.
J Eberwine 《Neuron》2001,32(6):959-960
Previous studies have shown that dendrites and axons contain both mRNAs and the machinery for local protein translation. While a number of studies in recent years have focused on the functional role of protein synthesis in dendrites, relatively less is know about the role of local translation in axons. Campbell and Holt (this issue of Neuron) show that local protein synthesis and degradation are required for proper chemotropic turning responses of isolated retinal growth cones.  相似文献   

3.
Nitric oxide (NO), produced by the inducible isoform of the NO synthase (iNOS), plays an important role in the pathophysiology of arthritic diseases. This work aimed at elucidating the role of the mitogen-activated protein kinases (MAPK), p38MAPK and p42/44MAPK, and of protein tyrosine kinases (PTK) on interleukin-1beta (IL-1)-induced iNOS expression in bovine articular chondrocytes. The specific inhibitor of the p38MAPK, SB 203580, effectively inhibited IL-1-induced iNOS mRNA and protein synthesis, as well as NO production, while the specific inhibitor of the p42/44MAPK, PD 98059, had no effect. These responses to IL-1 were also inhibited by treatment of the cells with the tyrosine kinase inhibitors, genistein and tyrphostin B42, which also prevented IL-1-induced NF-kappaB activation. The p38MAPK inhibitor, SB 203580, had no effect on IL-1-induced NF-kappaB activation. Finally, the p42/44MAPK inhibitor, PD 98059, prevented IL-1-induced AP-1 activation in a concentration that did not inhibit iNOS expression. In conclusion, this study shows that (1) PTK are part of the signaling pathway that leads to IL-1-induced NF-kappaB activation and iNOS expression; (2) the p38MAPK cascade is required for IL-1-induced iNOS expression; (3) the p42/44MAPK and AP-1 are not involved in IL-1-induced iNOS expression; and (4) NF-kappaB and the p38MAPK lie on two distinct pathways that seem to be independently required for IL-1-induced iNOS expression. Hence, inhibition of any of these two signaling cascades is sufficient to prevent iNOS expression and the subsequent production of NO in articular chondrocytes.  相似文献   

4.
5.
We report here a novel role for the constitutively active lysophosphatidic acid receptor-1 (LPA(1)) receptor in providing Gbetagamma subunits for use by the Trk A receptor. This enhances the ability of nerve growth factor (NGF) to promote signalling and cell response. These conclusions were based on three lines of evidence. Firstly, the LPA(1) receptor was co-immunoprecipitated with the Trk A receptor from lysates, suggesting that these proteins form a complex. Secondly, Ki16425, a selective protean agonist of the LPA(1) receptor, decreased constitutive basal and LPA-induced LPA(1) receptor-stimulated GTPgammaS binding. Ki16425 reduced the LPA-induced activation of p42/p44 mitogen activated protein kinase (MAPK), while acting as a weak stimulator of p42/p44 MAPK on its own, properties typical of a protean agonist. Significantly, Ki16425 also reduced the NGF-induced stimulation of p42/p44 MAPK and inhibited NGF-stimulated neurite outgrowth. Thirdly, the over-expression of the C-terminal GRK-2 peptide, which sequesters Gbetagamma subunits, reduced the NGF-induced activation of p42/p44 MAPK. In contrast, the stimulation of PC12 cells with LPA leads to a predominant G(i)alpha2-mediated Trk A-independent activation of p42/p44 MAPK, where Gbetagamma subunits play a diminished role. These findings suggest a novel role for the constitutively active LPA(1) receptor in regulating NGF-induced neuronal differentiation.  相似文献   

6.
We report here that the nerve growth factor (NGF) and lysophosphatidate (LPA) receptor signaling systems interact to regulate the p42/p44 MAPK pathway in PC12 cells. This is based upon several lines of evidence. First, the treatment of PC12 cells, which express LPA(1) receptors, with a sub-maximal concentration of LPA and NGF induced synergistic activation of p42/p44 MAPK. Second, the transfection of PC12 cells with LPA(1) receptor anti-sense construct, which reduced the expression of LPA(1), abrogated both LPA- and NGF-stimulated activation of p42/p44 MAPK. Third, the over-expression of recombinant LPA(1) receptor potentiated LPA- and NGF-dependent activation of p42/p44 MAPK. Fourth, the over-expression of C-terminal GRK2 peptide (which sequesters G-protein betagamma subunits) or beta-arrestin I clathrin binding domain (amino acids: 319-418) or pre-treatment of cells with pertussis toxin reduced the LPA- and NGF-dependent stimulation of p42/p44 MAPK. These findings support a model in which the Trk A receptor uses a G-protein-mediated mechanism to regulate the p42/p44 MAPK pathway. Such G-protein-mediated signaling is activated by the LPA(1) receptor as a means of cross-talk regulation with the Trk A receptor. Fifth, the treatment of cells with LPA induced the transactivation of the Trk A receptor. Sixth, LPA and/or NGF stimulated the translocation of tyrosine phosphorylated Trk A receptor and LPA(1) receptor to the nucleus. Taken together, these findings suggest that NGF and LPA exert cross-talk regulation both at the level of p42/p44 MAPK signaling and in the nuclear translocation of LPA(1) and Trk A receptors.  相似文献   

7.
Lipid rafts mediate chemotropic guidance of nerve growth cones   总被引:10,自引:0,他引:10  
Guirland C  Suzuki S  Kojima M  Lu B  Zheng JQ 《Neuron》2004,42(1):51-62
Axon guidance requires signal transduction of extracellular cues through the plasma membrane for directional motility. Here we present evidence that cholesterol- and sphingolipid-enriched membrane microdomains (lipid rafts) mediate specific guidance responses of nerve growth cones. Disruption of lipid rafts by various approaches targeting cholesterol or gangliosides selectively abolished growth cone attraction and repulsion in BDNF and netrin-1 gradients, respectively, without affecting glutamate-induced attraction. Interestingly, local raft disruption on one side of the growth cone in bath BDNF or netrin-1 produced opposite turning responses to that induced by the gradients. Raft manipulation also blocked Semaphorin 3A-induced growth cone repulsion, inhibition, and collapse. Finally, guidance responses appeared to involve raft-dependent activation of p42/p44 MAPK and ligand-induced receptor recruitment to lipid rafts. Together with the observation of asymmetric receptor-raft associations at the growth cone in guidance gradients, our findings indicate that localized signaling through membrane rafts plays a role in mediating guidance actions of extracellular cues on developing axons.  相似文献   

8.
9.
Lin WN  Luo SF  Lee CW  Wang CC  Wang JS  Yang CM 《Cellular signalling》2007,19(6):1258-1267
Lipopolysaccharide (LPS) has been shown to induce the expression of adhesion molecules on airway epithelial and smooth cells and contributes to inflammatory responses. Here, the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB) pathways for LPS-induced vascular cell adhesion molecule (VCAM)-1 expression were investigated in HTSMCs. LPS-induced expression of VCAM-1 protein and mRNA in a time-dependent manner, was significantly inhibited by inhibitors of MEK1/2 (U0126), p38 (SB202190), and c-Jun-N-terminal kinase (JNK; SP600125). The involvement of p42/p44 MAPK and p38 in these responses was further confirmed by that transfection with small interference RNAs (siRNA) direct against MEK, p42, and p38 significantly attenuated LPS-induced VCAM-1 expression. Consistently, LPS-stimulated phosphorylation of p42/p44 MAPK and p38 was attenuated by pretreatment with U0126 or SB202190, and transfection with these siRNAs, respectively. In addition, LPS-induced VCAM-1 expression was significantly blocked by a specific NF-kappaB inhibitor helenalin. LPS-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha was blocked by helenalin, U0126, SB202190, or SP600125. Moreover, the resultant enhancement of VCAM-1 expression increased the adhesion of polymorphonuclear cells to monolayer of HTSMCs which was blocked by pretreatment with helenalin, U0126, or SP600125 prior to LPS exposure. Taken together, these results suggest that in HTSMCs, activation of p42/p44 MAPK, p38, and JNK pathways, at least in part, mediated through NF-kappaB, is essential for LPS-induced VCAM-1 gene expression. These results provide new insight into the mechanisms of LPS action that bacterial toxins may promote inflammatory responses in the airway disease.  相似文献   

10.
11.
Spleen tyrosine kinase (Syk), a nonreceptor protein kinase initially found to be expressed only in hemopoietic cells, has now been shown to be expressed in nonhemopoietic cells and to mediate signaling of various cytokines. Whether Syk plays any role in TNF signaling was investigated. Treatment of Jurkat T cells with TNF activated Syk kinase but not ZAP70, another member of Syk kinase family, and the optimum activation occurred at 10 s and with 1 nM TNF. TNF also activated Syk in myeloid and epithelial cells. TNF-induced Syk activation was abolished by piceatannol (Syk-selective inhibitor), which led to the suppression of TNF-induced activation of c- JNK, p38 MAPK, and p44/p42 MAPK. Jurkat cells that did not express Syk (JCaM1, JCaM1/lck) showed lack of TNF-induced Syk, JNK, p38 MAPK, and p44/p42 MAPK activation, as well as TNF-induced IkappaBalpha phosphorylation, IkappaBalpha degradation, and NF-kappaB activation. TNF-induced NF-kappaB activation was enhanced by overexpression of Syk by Syk-cDNA and suppressed when Syk expression was down-regulated by expression of Syk-small interfering RNA (siRNA-Syk). The apoptotic effects of TNF were reduced by up-regulation of NF-kappaB by Syk-cDNA, and enhanced by down-regulation of NF-kappaB by siRNA-Syk. Immunoprecipitation of cells with Syk Abs showed TNF-dependent association of Syk with both TNFR1 and TNFR2; this association was enhanced by up-regulation of Syk expression with Syk-cDNA and suppressed by down-regulation of Syk using siRNA-Syk. Overall, our results demonstrate that Syk activation plays an essential role in TNF-induced activation of JNK, p38 MAPK, p44/p42 MAPK, NF-kappaB, and apoptosis.  相似文献   

12.
13.
The chemotropic guidance cue netrin-1 mediates attraction of migrating axons during central nervous system development through the receptor Deleted in Colorectal Cancer (DCC). Downstream of netrin-1, activated Rho GTPases Rac1 and Cdc42 induce cytoskeletal rearrangements within the growth cone. The Rho guanine nucleotide exchange factor (GEF) Trio is essential for Rac1 activation downstream of netrin-1/DCC, but the molecular mechanisms governing Trio activity remain elusive. Here, we demonstrate that Trio is phosphorylated by Src family kinases in the embryonic rat cortex in response to netrin-1. In vitro, Trio was predominantly phosphorylated at Tyr2622 by the Src kinase Fyn. Though the phospho-null mutant TrioY2622F retained GEF activity toward Rac1, its expression impaired netrin-1-induced Rac1 activation and DCC-mediated neurite outgrowth in N1E-115 neuroblastoma cells. TrioY2622F impaired netrin-1-induced axonal extension in cultured cortical neurons and was unable to colocalize with DCC in growth cones, in contrast to wild-type Trio. Furthermore, depletion of Trio in cortical neurons reduced the level of cell surface DCC in growth cones, which could be restored by expression of wild-type Trio but not TrioY2622F. Together, these findings demonstrate that TrioY2622 phosphorylation is essential for the regulation of the DCC/Trio signaling complex in cortical neurons during netrin-1-mediated axon outgrowth.  相似文献   

14.
Hyperuricemia and angiotensin II (Ang II) may have a pathogenetic role in the development of hypertension and atherosclerosis as well as cardiovascular disease (CVD) and its prognosis. The purpose of this study was to investigate whether uric acid can induce proliferative pathways of vascular smooth muscle cell (VSMC) that are thought to be responsible for the development of CVD. The phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), p44/42 mitogen-activated protein kinase (p44/42 MAPK) and platelet-derived growth factor receptor β (PDGFRβ) was measured by Elisa and Western blot techniques to determine the activation of proliferative pathways in primary cultured VSMCs from rat aorta. Results demonstrated that uric acid can stimulate p38 MAPK, p44/42 MAPK and PDGFRβ phosphorylation in a time- and concentration-dependent manner. Furthermore, treatment of VSMCs with the angiotensin II type I receptor (AT1R) inhibitor losartan suppressed p38 MAPK and p44/42 MAPK induction by uric acid. The stimulatory effect of uric acid on p38 MAPK was higher compared to that of Ang II. The results of this study show for the first time that uric acid-induced PDGFRβ phosphorylation plays a crucial role in the development of CVDs and that elevated uric acid levels could be a potential therapeutical target in CVD patients.  相似文献   

15.
Prostate cancer cell migration is an essential event both in the progression of prostate cancer and in the steps leading to metastasis. We report here that lysophosphatidic acid (LPA), a potent bioactive phospholipid, induces prostate cancer PC3 cell migration via the activation of the LPA(1) receptor, which is linked to a PTX-sensitive activation mechanism of the mitogen-activated protein kinases (MAPK). Our results demonstrate that parallel activation of ERK1/2 and p38, but not JNK, is responsible for LPA-stimulated PC3 cell migration. Furthermore, using small interfering RNA (siRNA) technology, and overexpressing dominant-negative mutants of p38 MAPK isotypes of alpha, beta, gamma and delta, we have identified that the activation of ERK2 (p42) and p38alpha, but not of ERK1 and the other isoforms of p38 MAPK, is required for LPA-induced migration. Our study provides the first evidence for a functional role of p42 and p38alpha in LPA-induced mammalian cell migration, and also demonstrates, for the first time, that the receptor LPA(1) mediates prostate cancer cell migration. The results of the present study suggest that LPA, the receptor LPA(1), ERK2 and p38alpha are important regulators for prostate cancer cell invasion and thus could play a significant role in the development of metastasis.  相似文献   

16.
17.
Little is known about the regulation mechanism of endothelial cell proliferation by retinal pericytes. The purpose of this study was to elucidate the suppression mechanism of retinal capillary endothelial cell growth by soluble factors derived from retinal pericytes. Conditioned medium of retinal pericytes (rPCT1-CM) suppressed ischemia-induced retinal neovascularization. The growth and DNA synthesis of TR-iBRB2 cells, a conditionally immortalized rat retinal capillary endothelial cell line, were suppressed in a concentration-dependent manner by concentrated rPCT1-CM. The number of human cultured endothelial cells was also reduced by rPCT1-CM. These results provide the first evidence that CM from the cultivation of pericytes alone can inhibit retinal neovascularization in vivo and in vitro. Although the growth reduction of TR-iBRB2 cells was only partly reversed by treatment of rPCT1-CM with antibodies to transforming growth factor-beta1, it was completely lost by heat-treatment of rPCT1-CM, suggesting that anti-angiogenic factors are soluble proteins. The levels of expression of G1/S-phase-related proteins, such as cyclin D1, cyclin-dependent kinase (cdk)4, cdk6, and proliferating cell nuclear antigen, were reduced and a cdk inhibitor, p21(Cip1), was induced in rPCT1-CM-treated TR-iBRB2 cells. Moreover, phosphorylated p44/42 mitogen-activated protein kinase (p44/42 MAPK) in TR-iBRB2 cells was reduced by rPCT1-CM treatment and phosphorylated protein kinase C (PKC)alpha/betaII, which is upstream of p44/42 MAPK, was also suppressed. In conclusion, CM from retinal pericytes suppresses PKC-p44/42 MAPK signaling, inhibits endothelial cell growth, and prevents retinal neovascularization. Anti-angiogenic factors derived from retinal pericytes are likely to play a critical role in the regulation of retinal endothelial cell growth.  相似文献   

18.
19.
20.
Netrins are chemotropic guidance cues that attract or repel growing axons during development. DCC (deleted in colorectal cancer), a transmembrane protein that is a receptor for netrin-1, is implicated in mediating both responses. However, the mechanism by which this is achieved remains unclear. Here we report that Rho GTPases are required for embryonic spinal commissural axon outgrowth induced by netrin-1. Using N1E-115 neuroblastoma cells, we found that both Rac1 and Cdc42 activities are required for DCC-induced neurite outgrowth. In contrast, down-regulation of RhoA and its effector Rho kinase stimulates the ability of DCC to induce neurite outgrowth. In Swiss 3T3 fibroblasts, DCC was found to trigger actin reorganization through activation of Rac1 but not Cdc42 or RhoA. We detected that stimulation of DCC receptors with netrin-1 resulted in a 4-fold increase in Rac1 activation. These results implicate the small GTPases Rac1, Cdc42, and RhoA as essential components that participate in signaling the response of axons to netrin-1 during neural development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号