首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotavirus infectivity is dependent on the proteolytic cleavage of the VP4 spike protein into VP8* and VP5* proteins. Proteolytically activated virus, as well as expressed VP5*, permeabilizes membranes, suggesting that cleavage exposes a membrane-interactive domain of VP5* which effects rapid viral entry. The VP5* protein contains a single long hydrophobic domain (VP5*-HD, residues 385 to 404) at an internal site. In order to address the role of the VP5*-HD in permeabilizing cellular membranes, we analyzed the entry of o-nitrophenyl-beta-D-galactopyranoside (ONPG) into cells induced to express VP5* or mutated VP5* polypeptides. Following IPTG (isopropyl-beta-D-thiogalactopyranoside) induction, VP5* and VP5* truncations containing the VP5*-HD permeabilized cells to the entry and cleavage of ONPG, while VP8* and control proteins had no effect on cellular permeability. Expression of VP5* deletions containing residues 265 to 474 or 265 to 404 permeabilized cells; however, C-terminal truncations which remove the conserved GGA (residues 399 to 401) within the HD abolished membrane permeability. Site-directed mutagenesis of the VP5-HD further demonstrated a requirement for residues within the HD for VP5*-induced membrane permeability. Functional analysis of mutant VP5*s indicate that conserved glycines within the HD are required and suggest that a random coiled structure rather than the strictly hydrophobic character of the domain is required for permeability. Expressed VP5* did not alter bacterial growth kinetics or lyse bacteria following induction. Instead, VP5*-mediated size-selective membrane permeability, releasing 376-Da carboxyfluorescein but not 4-kDa fluorescein isothiocyanate-dextran from preloaded liposomes. These findings suggest that the fundamental role for VP5* in the rotavirus entry process may be to expose triple-layered particles to low [Ca](i), which uncoats the virus, rather than to effect the detergent-like lysis of early endosomal membranes.  相似文献   

2.
The spike protein VP4 is a key component of the membrane penetration apparatus of rotavirus, a nonenveloped virus that causes childhood gastroenteritis. Trypsin cleavage of VP4 produces a fragment, VP5*, with a potential membrane interaction region, and primes rotavirus for cell entry. During entry, the part of VP5* that protrudes from the virus folds back on itself and reorganizes from a local dimer to a trimer. Here, we report that a globular domain of VP5*, the VP5* antigen domain, is an autonomously folding unit that alternatively forms well-ordered dimers and trimers. Because the domain contains heterotypic neutralizing epitopes and is soluble when expressed directly, it is a promising potential subunit vaccine component. X-ray crystal structures show that the dimer resembles the spike body on trypsin-primed virions, and the trimer resembles the folded-back form of the spike. The same structural elements pack differently to form key intermolecular contacts in both oligomers. The intrinsic molecular property of alternatively forming dimers and trimers facilitates the VP5* reorganization, which is thought to mediate membrane penetration during cell entry.  相似文献   

3.
J T Patton  J Hua    E A Mansell 《Journal of virology》1993,67(8):4848-4855
Because the rotavirus spike protein VP4 contains conserved Cys residues at positions 216, 318, 380, and 774 and, for many animal rotaviruses, also at position 203, we sought to determine whether disulfide bonds were structural elements of VP4. Electrophoretic analysis of untreated and trypsin-treated rhesus rotavirus (RRV) and simain rotavirus SA11 in the presence and absence of the reducing agent dithioerythritol revealed that VP4 and its cleavage fragments VP5* and VP8* possessed intrachain disulfide bonds. Given that the VP8* fragments of RRV and SA11 contain only two Cys residues, those at positions 203 and 216, these data indicated that these two residues were covalently linked. Electrophoretic examination of truncated species of VP4 and VP4 containing Cys-->Ser mutations synthesized in reticulocyte lysates provided additional evidence that Cys-203 and Cys-216 in VP8* of RRV were linked by a disulfide bridge. VP5* expressed in vitro was able to form a disulfide bond analogous to that in the VP5* fragment of trypsin-treated RRV. Analysis of a Cys-774-->Ser mutant of VP5* showed that, while it was able to form a disulfide bond, a Cys-318-->Ser mutant of VP5* was not. These results indicated that the VP4 component of all rotaviruses, except B223, contains a disulfide bond that links Cys-318 and Cys-380 in the VP5* region of the protein. This bond is located between the trypsin cleavage site and the putative fusion domain of VP4. Because human rotaviruses lack Cys-203 and, hence, unlike many animal rotaviruses cannot possess a disulfide bond in VP8*, it is apparent that VP4 is structurally variable in nature, with human rotaviruses generally containing one disulfide linkage and animal rotaviruses generally containing two such linkages. Considered with the results of anti-VP4 antibody mapping studies, the data suggest that the disulfide bond in VP5* exists within the 2G4 epitope and may be located at the distal end of the VP4 spike on rotavirus particles.  相似文献   

4.
The Simian 11 rotavirus glycoprotein VP7 is directed to the endoplasmic reticulum (ER) of the cell and retained as an integral membrane protein. The gene coding for VP7 predicts two potential initiation codons, each of which precedes a hydrophobic region of amino acids (H1 and H2) with the characteristics of a signal peptide. Using the techniques of gene mutagenesis and expression, we have determined that either hydrophobic domain alone can direct VP7 to the ER. A protein lacking both hydrophobic regions was not transported to the ER. Some polypeptides were directed across the ER membrane and then into the secretory pathway of the cell. For a variant retaining only the H1 domain, secretion was cleavage dependent, since an amino acid change which prevented cleavage also stopped secretion. However, secretion of two other deletion mutants lacking H1 and expressing truncated H2 domains was unaffected by this mutation, suggesting that these proteins were secreted without cleavage of their NH2-terminal hydrophobic regions or secreted after cleavage at a site(s) not predicted by current knowledge.  相似文献   

5.
The purpose of this study was to determine which regions of the VP6 protein of the murine rotavirus strain EDIM are able to elicit protection against rotavirus shedding in the adult mouse model following intranasal (i.n.) immunization with fragments of VP6 and a subsequent oral EDIM challenge. In the initial experiment, the first (fragment AB), middle (BC), or last (CD) part of VP6 that was genetically fused to maltose-binding protein (MBP) and expressed in Escherichia coli was examined. Mice (BALB/c) immunized with two 9-microg doses of each of the chimeras and 10 microg of the mucosal adjuvant LT(R192G) were found to be protected against EDIM shedding (80, 92, and nearly 100% reduction, respectively; P 相似文献   

6.
Secretion of the VP8* subunit of the VP4 capsid protein of rotavirus by Lactococcus lactis has been achieved. For this purpose, a secretion vector has been constructed with the lactococcal signal sequence AL9 and the VP8*-encoding gene fragment. The amount of VP8* secreted by L. lactis in the culture supernatant was quantified and visualised by Western blot. Furthermore, it was shown to retain its hemagglutination capability, indicating that the conformation of the secreted peptide may be retaining its biological activity.  相似文献   

7.
在前期工作中发现,截短的轮状病毒VP4~*蛋白(aa26–476)在大肠杆菌中能够以可溶形式表达,且在小鼠模型中具有较高的免疫原性和免疫保护性。本研究通过颗粒化进一步提高VP4~*蛋白的免疫保护性。通过37℃水浴加热处理24h使VP4~*蛋白多聚化,通过高效液相色谱、透射电镜、分析超离等分析VP4~*蛋白颗粒化程度,通过酶联免疫吸附试验分析颗粒化对VP4~*蛋白与中和抗体反应性的影响;通过差示量热法分析VP4~*高聚体的热稳定性;最后,通过小鼠母传抗体模型研究颗粒化对VP4~*免疫原性和免疫保护性的影响。结果表明,VP4~*蛋白高聚体结构均一,并且相比三聚体,具有更高热稳定性和中和抗体结合活性;在内毒素20 EU/mg的条件下,与铝佐剂混合,刺激小鼠产生更高滴度的中和抗体;对轮状病毒导致的腹泻具有更高的免疫保护性。综上所述,VP4~*高聚体的研究为轮状病毒基因工程亚单位疫苗的研制提供了更广阔的思路。  相似文献   

8.
9.
Rotavirus VP7 is a membrane-associated protein of the endoplasmic reticulum (ER). It is the product of rotavirus gene 9 which potentially encodes a protein of 326 amino acids that contains two amino terminal hydrophobic domains, h1 and h2, each preceded by an initiation codon. Comparison of the size of products derived from altered genes containing coding sequences for both h1 and h2 with those lacking the h1 sequence ('dhl' mutants), indicates that initiation takes place at M30 immediately preceding h2 (residues F32 to L48) and that h2 is cleaved, confirming the studies of others (Stirzaker, S.C., P.L. Whitfeld, D.L. Christie, A.R. Bellamy, and G.W. Both. 1987. J. Cell Biol. 105:2897-2903). Our previous work had shown that deletions in the carboxy end of h2, extending to amino acid 61 in the open reading frame, resulted in secretion of VP7. The region from amino acid number 51-61, present in wild-type VP7 but missing in the secreted mutant delta 47-61, was thus implicated to have a role in ER retention. To test this, a series of chimeric genes were constructed by fusing the first 63 codons of wild-type VP7, delta 1-14 or delta 51-61/dhl, to the mouse salivary alpha-amylase gene, a secretory protein, such that the fusion junction was located at the exact mature terminus of amylase. The chimeric proteins VP7(63)/amylase, delta 1-14(63)/amylase and delta 51-61(63)/dhl/amylase were secreted when expressed in cells and the h2 domain was cleaved when mRNA was translated in vitro. These results imply that the sequence 51-61 is necessary but not sufficient for ER retention. When a second series of VP7/amylase chimera were constructed extending the VP7 contribution to amino acid 111, the product expressed by delta 1-14(111)/amylase was not secreted whereas that of delta 47-61(111)/amylase was. Significantly, the intracellular delta 1-14(111)/amylase product exhibited an amylase enzymatic specific activity that was similar to that of the wild-type amylase product. We conclude that two regions of VP7 mediate its retention in the ER, the first lies within the sequence 51-61 and the second within the sequence 62-111, which contains the glycosylation site for VP7. Both regions are necessary for retention, though neither is sufficient alone.  相似文献   

10.
Maturing spermatozoa acquire full fertilization competence by undergoing major changes in membrane fluidity and protein composition and localization. In epididymal spermatozoa, several proteins are associated with cholesterol- and sphingolipid-enriched detergent-resistant membrane (DRM) domains. These proteins dissociate from DRM in capacitated sperm cells, suggesting that DRM may play a role in the redistribution of integral and peripheral proteins in response to cholesterol removal. Since seminal plasma regulates sperm cell membrane fluidity, we hypothesized that seminal plasma factors could be involved in DRM disruption and redistribution of DRM-associated proteins. Our results indicate that: 1) the sperm-associated proteins, P25b and adenylate kinase 1, are linked to DRM of epididymal spermatozoa, but were exclusively associated with detergent-soluble material in ejaculated spermatozoa; 2) seminal plasma treatment of cauda epididymal spermatozoa significantly lowered the content of cholesterol and the ganglioside, GM1, in DRM; and 3), seminal plasma dissociates P25b from DRM in epididymal spermatozoa. We found that the seminal plasma protein, Niemann-Pick C2 protein, is involved in cholesterol and GM1 depletion within DRM, then leading to membrane redistribution of P25b that occurs in a very rapid and capacitation-independent manner. Together, these data suggest that DRM of ejaculated spermatozoa are reorganized by specific seminal plasma proteins, which induce lipid efflux as well as dissociation of DRM-anchored proteins. This process could be physiologically relevant in vivo to allow sperm survival and attachment within the female reproductive tract and to potentiate recognition, binding, and penetration of the oocyte.  相似文献   

11.
Nuclear magnetic resonance spectroscopy demonstrates that the rhesus rotavirus hemagglutinin specifically binds alpha-anomeric N-acetylneuraminic acid with a K(d) of 1.2 mM. The hemagglutinin requires no additional carbohydrate moieties for binding, does not distinguish 3' from 6' sialyllactose, and has approximately tenfold lower affinity for N-glycolylneuraminic than for N-acetylneuraminic acid. The broad specificity and low affinity of sialic acid binding by the rotavirus hemagglutinin are consistent with this interaction mediating initial cell attachment prior to the interactions that determine host range and cell type specificity.  相似文献   

12.
Zhang G  Sanfaçon H 《Journal of virology》2006,80(21):10847-10857
Replication of nepoviruses (family Comoviridae) occurs in association with endoplasmic reticulum (ER)-derived membranes. We have previously shown that the putative nucleoside triphosphate-binding protein (NTB) of Tomato ringspot nepovirus is an integral membrane protein with two ER-targeting sequences and have suggested that it anchors the viral replication complex (VRC) to the membranes. A second highly hydrophobic protein domain (X2) is located immediately upstream of the NTB domain in the RNA1-encoded polyprotein. X2 shares conserved sequence motifs with the comovirus 32-kDa protein, an ER-targeted protein implicated in VRC assembly. In this study, we examined the ability of X2 to associate with intracellular membranes. The X2 protein was fused to the green fluorescent protein and expressed in Nicotiana benthamiana by agroinfiltration. Confocal microscopy and membrane flotation experiments suggested that X2 is targeted to ER membranes. Mutagenesis studies revealed that X2 contains multiple ER-targeting domains, including two C-terminal transmembrane helices and a less-well-defined domain further upstream. To investigate the topology of the protein in the membrane, in vitro glycosylation assays were conducted using X2 derivatives that contained N-glycosylation sites introduced at the N or C termini of the protein. The results led us to propose a topological model for X2 in which the protein traverses the membrane three times, with the N terminus oriented in the lumen and the C terminus exposed to the cytoplasmic face. Taken together, our results indicate that X2 is an ER-targeted polytopic membrane protein and raises the possibility that it acts as a second membrane anchor for the VRC.  相似文献   

13.
Some viruses acquire their envelopes by budding through internal membranes of their host cell. We have expressed the cloned cDNA for glycoproteins from two such viruses, the E1 protein of coronavirus, which buds in the Golgi region, and VP10 protein of rotavirus, which assembles in the endoplasmic reticulum. Messenger RNA was prepared from both cDNAs by using SP6 polymerase and either translated in vitro or injected into cultured CV1 cells or Xenopus oocytes. In CV1 cells, the E1 protein was localised to the Golgi region and VP10 protein to the endoplasmic reticulum. In Xenopus oocytes, the E1 protein acquired post-translational modifications indistinguishable from the sialylated, O-linked sugars found on viral protein, while the VP10 protein acquired endoglycosidase-H-sensitive N-linked sugars, consistent with their localisation to the Golgi complex and endoplasmic reticulum, respectively. Thus the two proteins provide models with which to study targeting to each of these intracellular compartments. When the RNAs were expressed in matured, meiotic oocytes, the VP10 protein was modified as before, but the E1 protein was processed to a much lesser extent than in interphase oocytes, consistent with a cessation of vesicular transport during cell division.  相似文献   

14.
Single-chain antibodies (scFv) recognizing the VP8* fraction of rotavirus outer capsid and blocking rotavirus infection in vitro were isolated by phage display. Vectors for the extracellular expression in Lactobacillus casei of one of the scFv were constructed. L. casei was able to secrete active scFv to the growth medium, showing the potential of probiotic bacteria to be engineered to express molecules suitable for in vivo antirotavirus therapies.  相似文献   

15.
The most intensively studied rotavirus strains initially attach to cells when the "heads" of their protruding spikes bind cell surface sialic acid. Rotavirus strains that cause disease in humans do not bind this ligand. The structure of the sialic acid binding head (the VP8* core) from the simian rotavirus strain RRV has been reported, and neutralization epitopes have been mapped onto its surface. We report here a 1.6-A resolution crystal structure of the equivalent domain from the sialic acid-independent rotavirus strain DS-1, which causes gastroenteritis in humans. Although the RRV and DS-1 VP8* cores differ functionally, they share the same galectin-like fold. Differences between the RRV and DS-1 VP8* cores in the region that corresponds to the RRV sialic acid binding site make it unlikely that DS-1 VP8* binds an alternative carbohydrate ligand in this location. In the crystals, a surface cleft on each DS-1 VP8* core binds N-terminal residues from a neighboring molecule. This cleft may function as a ligand binding site during rotavirus replication. We also report an escape mutant analysis, which allows the mapping of heterotypic neutralizing epitopes recognized by human monoclonal antibodies onto the surface of the VP8* core. The distribution of escape mutations on the DS-1 VP8* core indicates that neutralizing antibodies that recognize VP8* of human rotavirus strains may bind a conformation of the spike that differs from those observed to date.  相似文献   

16.
Coiled-coil domains in eukaryotic and prokaryotic proteins contribute to diverse structural and regulatory functions. Here we have used in silico analysis to predict which proteins in the proteome of the enteric pathogen, Salmonella enterica serovar Typhimurium, harbour coiled-coil domains. We found that coiled-coil domains are especially prevalent in virulence-associated proteins, including type III effectors. Using SopB as a model coiled-coil domain type III effector, we have investigated the role of this motif in various aspects of effector function including chaperone binding, secretion and translocation, protein stability, localization and biological activity. Compared with wild-type SopB, SopB coiled-coil mutants were unstable, both inside bacteria and after translocation into host cells. In addition, the putative coiled-coil domain was required for the efficient membrane association of SopB in host cells. Since many other Salmonella effectors were predicted to contain coiled-coil domains, we also investigated the role of this motif in their intracellular targeting in mammalian cells. Mutation of the predicted coiled-coil domains in PipB2, SseJ and SopD2 also eliminated their membrane localization in mammalian cells. These findings suggest that coiled-coil domains represent a common membrane-targeting determinant for Salmonella type III effectors.  相似文献   

17.
The VP8* fragment from the rotavirus spike protein was expressed as a fusion protein with two different cell wall proteins of Saccharomyces cerevisiae, Icwp (Ssr1p) and Pir4, to achieve cell wall targeting or secretion to the growth medium of the fusion proteins. Two different host strains were used for the expression of the fusion proteins, a standard S. cerevisiae strain and a mnn9 glycosylation deficient strain, the later to reduce hyper-glycosylation. The Icwp-VP8* fusion could only be detected in the growth medium, indicating that the presence of the VP8* moiety interferes with the anchorage of Icwp to the cell wall. In the case of the Pir4-VP8* fusion proteins, we achieved cell wall targeting or secretion depending on how the gene fusion had been performed. In all cases, the fusion proteins expressed in the mnn9 strain showed a reduced level of glycosylation. Mice were inoculated intraperitoneally either with Pir4-VP8* or Icwp-VP8* fusion proteins purified from the growth medium of mnn9 strains expressing them or with whole cells of an mnn9 strain expressing a Pir4-VP8 fusion protein on its cell walls. Hundred percent of mice inoculated with the Pir4-VP8* fusion protein and 25% of those inoculated with the Icwp-VP8* fusion protein showed high titers of anti-VP8* antibodies. No specific immune response was detected in those mice inoculated with whole cells. Finally, susceptibility to rotavirus infection of the offspring of immunized dams was determined and protection was found in a percentage of approximately 60% with respect to the control group.  相似文献   

18.
Protein-protein interactions within the membrane are involved in many vital cellular processes. Consequently, deficient oligomerization is associated with known diseases. The interactions can be partially or fully mediated by transmembrane domains (TMD). However, in contrast to soluble regions, our knowledge of the factors that control oligomerization and recognition between the membrane-embedded domains is very limited. Due to the unique chemical and physical properties of the membrane environment, rules that apply to interactions between soluble segments are not necessarily valid within the membrane. This review summarizes our knowledge on the sequences mediating TMD-TMD interactions which include conserved motifs such as the GxxxG, QxxS, glycine and leucine zippers, and others. The review discusses the specific role of polar, charged and aromatic amino acids in the interface of the interacting TMD helices. Strategies to determine the strength, dynamics and specificities of these interactions by experimental (ToxR, TOXCAT, GALLEX and FRET) or various computational approaches (molecular dynamic simulation and bioinformatics) are summarized. Importantly, the contribution of the membrane environment to the TMD-TMD interaction is also presented. Studies utilizing exogenously added TMD peptides have been shown to influence in vivo the dimerization of intact membrane proteins involved in various diseases. The chirality independent TMD-TMD interactions allows for the design of novel short d- and l-amino acids containing TMD peptides with advanced properties. Overall these studies shed light on the role of specific amino acids in mediating the assembly of the TMDs within the membrane environment and their contribution to protein function. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   

19.
The microlocalization of Ras proteins to different microdomains of the plasma membrane is critical for signaling specificity. Here we examine the complex membrane interactions of H-ras with a combination of FRAP on live cells to measure membrane affinity and electron microscopy of intact plasma membrane sheets to spatially map microdomains. We show that three separable forces operate on H-ras at the plasma membrane. The lipid anchor, comprising a processed CAAX motif and two palmitic acid residues, generates one attractive force that provides a high-affinity interaction with lipid rafts. The adjacent hypervariable linker domain provides a second attractive force but for nonraft plasma membrane microdomains. Operating against the attractive interaction of the lipid anchor for lipid rafts is a repulsive force generated by the N-terminal catalytic domain that increases when H-ras is GTP loaded. These observations lead directly to a novel mechanism that explains how H-ras lateral segregation is regulated by activation state: GTP loading decreases H-ras affinity for lipid rafts and allows the hypervariable linker domain to target to nonraft microdomains, the primary site of H-ras signaling.  相似文献   

20.
Three cDNA clones comprising the VP8 subunit of the VP4 of human rotavirus strain KU (VP7 serotype G1; VP4 serotype P1A) G1 were constructed. The corresponding encoded peptides were designated according to their locations in the VP8 subunit as A (amino acids 1 to 102), B (amino acids 84 to 180), and C (amino acids 150 to 246 plus amino acids 247 to 251 from VP5). In addition, cDNA clones encoding peptide B of the VP8 subunit of the VP4 gene from human rotavirus strains DS-1 (G2; P1B) and 1076 (G2; P2) were also constructed. These DNA fragments were inserted into plasmid pGEMEX-1 and expressed in Escherichia coli. Western immunoblot analysis using antisera to rotavirus strains KU (P1A), Wa (P1A), DS-1 (P1B), 1076 (P2), and M37 (P2) demonstrated that peptides A and C cross-reacted with heterotypic human rotavirus VP4 antisera, suggesting that these two peptides represent conserved epitopes in the VP8 subunit. In contrast, peptide B appears to be involved in the VP4 serotype and subtype specificities, because it reacted only with the corresponding serotype- and subtype-specific antiserum. Antiserum raised against peptide A, B, or C of strain KU contained a lower level of neutralizing activity than did that induced by the entire VP8 subunit. In addition, the serotype-specific neutralizing activity of anti-KU VP8 serum was ablated after adsorption with the KU VP8 protein but not with a mixture of peptides A, B, and C of strain KU, suggesting that most of the serotype-specific epitopes in the VP8 subunit are conformational and are dependent on the entire amino acid sequence of VP8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号